| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | caofref.2 |  |-  ( ph -> F : A --> S ) | 
						
							| 3 |  | caofcom.3 |  |-  ( ph -> G : A --> S ) | 
						
							| 4 |  | caofass.4 |  |-  ( ph -> H : A --> S ) | 
						
							| 5 |  | caofass.5 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x R y ) T z ) = ( x O ( y P z ) ) ) | 
						
							| 6 | 5 | ralrimivvva |  |-  ( ph -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ w e. A ) -> A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) ) | 
						
							| 8 | 2 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) | 
						
							| 9 | 3 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) | 
						
							| 10 | 4 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) | 
						
							| 11 |  | oveq1 |  |-  ( x = ( F ` w ) -> ( x R y ) = ( ( F ` w ) R y ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( x = ( F ` w ) -> ( ( x R y ) T z ) = ( ( ( F ` w ) R y ) T z ) ) | 
						
							| 13 |  | oveq1 |  |-  ( x = ( F ` w ) -> ( x O ( y P z ) ) = ( ( F ` w ) O ( y P z ) ) ) | 
						
							| 14 | 12 13 | eqeq12d |  |-  ( x = ( F ` w ) -> ( ( ( x R y ) T z ) = ( x O ( y P z ) ) <-> ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( y = ( G ` w ) -> ( ( F ` w ) R y ) = ( ( F ` w ) R ( G ` w ) ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( y = ( G ` w ) -> ( ( ( F ` w ) R y ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T z ) ) | 
						
							| 17 |  | oveq1 |  |-  ( y = ( G ` w ) -> ( y P z ) = ( ( G ` w ) P z ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( y = ( G ` w ) -> ( ( F ` w ) O ( y P z ) ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) | 
						
							| 19 | 16 18 | eqeq12d |  |-  ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y ) T z ) = ( ( F ` w ) O ( y P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( z = ( H ` w ) -> ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) | 
						
							| 21 |  | oveq2 |  |-  ( z = ( H ` w ) -> ( ( G ` w ) P z ) = ( ( G ` w ) P ( H ` w ) ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( z = ( H ` w ) -> ( ( F ` w ) O ( ( G ` w ) P z ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) | 
						
							| 23 | 20 22 | eqeq12d |  |-  ( z = ( H ` w ) -> ( ( ( ( F ` w ) R ( G ` w ) ) T z ) = ( ( F ` w ) O ( ( G ` w ) P z ) ) <-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) | 
						
							| 24 | 14 19 23 | rspc3v |  |-  ( ( ( F ` w ) e. S /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) | 
						
							| 25 | 8 9 10 24 | syl3anc |  |-  ( ( ph /\ w e. A ) -> ( A. x e. S A. y e. S A. z e. S ( ( x R y ) T z ) = ( x O ( y P z ) ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) | 
						
							| 26 | 7 25 | mpd |  |-  ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) = ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) | 
						
							| 27 | 26 | mpteq2dva |  |-  ( ph -> ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) | 
						
							| 28 |  | ovexd |  |-  ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) e. _V ) | 
						
							| 29 | 2 | feqmptd |  |-  ( ph -> F = ( w e. A |-> ( F ` w ) ) ) | 
						
							| 30 | 3 | feqmptd |  |-  ( ph -> G = ( w e. A |-> ( G ` w ) ) ) | 
						
							| 31 | 1 8 9 29 30 | offval2 |  |-  ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) | 
						
							| 32 | 4 | feqmptd |  |-  ( ph -> H = ( w e. A |-> ( H ` w ) ) ) | 
						
							| 33 | 1 28 10 31 32 | offval2 |  |-  ( ph -> ( ( F oF R G ) oF T H ) = ( w e. A |-> ( ( ( F ` w ) R ( G ` w ) ) T ( H ` w ) ) ) ) | 
						
							| 34 |  | ovexd |  |-  ( ( ph /\ w e. A ) -> ( ( G ` w ) P ( H ` w ) ) e. _V ) | 
						
							| 35 | 1 9 10 30 32 | offval2 |  |-  ( ph -> ( G oF P H ) = ( w e. A |-> ( ( G ` w ) P ( H ` w ) ) ) ) | 
						
							| 36 | 1 8 34 29 35 | offval2 |  |-  ( ph -> ( F oF O ( G oF P H ) ) = ( w e. A |-> ( ( F ` w ) O ( ( G ` w ) P ( H ` w ) ) ) ) ) | 
						
							| 37 | 27 33 36 | 3eqtr4d |  |-  ( ph -> ( ( F oF R G ) oF T H ) = ( F oF O ( G oF P H ) ) ) |