| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofdi.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | caofdi.2 |  |-  ( ph -> F : A --> K ) | 
						
							| 3 |  | caofdi.3 |  |-  ( ph -> G : A --> S ) | 
						
							| 4 |  | caofdi.4 |  |-  ( ph -> H : A --> S ) | 
						
							| 5 |  | caofdir.5 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) | 
						
							| 6 | 5 | adantlr |  |-  ( ( ( ph /\ w e. A ) /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x R y ) T z ) = ( ( x T z ) O ( y T z ) ) ) | 
						
							| 7 | 3 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) | 
						
							| 8 | 4 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) | 
						
							| 9 | 2 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. K ) | 
						
							| 10 | 6 7 8 9 | caovdird |  |-  ( ( ph /\ w e. A ) -> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) = ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) | 
						
							| 11 | 10 | mpteq2dva |  |-  ( ph -> ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) | 
						
							| 12 |  | ovexd |  |-  ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( H ` w ) ) e. _V ) | 
						
							| 13 | 3 | feqmptd |  |-  ( ph -> G = ( w e. A |-> ( G ` w ) ) ) | 
						
							| 14 | 4 | feqmptd |  |-  ( ph -> H = ( w e. A |-> ( H ` w ) ) ) | 
						
							| 15 | 1 7 8 13 14 | offval2 |  |-  ( ph -> ( G oF R H ) = ( w e. A |-> ( ( G ` w ) R ( H ` w ) ) ) ) | 
						
							| 16 | 2 | feqmptd |  |-  ( ph -> F = ( w e. A |-> ( F ` w ) ) ) | 
						
							| 17 | 1 12 9 15 16 | offval2 |  |-  ( ph -> ( ( G oF R H ) oF T F ) = ( w e. A |-> ( ( ( G ` w ) R ( H ` w ) ) T ( F ` w ) ) ) ) | 
						
							| 18 |  | ovexd |  |-  ( ( ph /\ w e. A ) -> ( ( G ` w ) T ( F ` w ) ) e. _V ) | 
						
							| 19 |  | ovexd |  |-  ( ( ph /\ w e. A ) -> ( ( H ` w ) T ( F ` w ) ) e. _V ) | 
						
							| 20 | 1 7 9 13 16 | offval2 |  |-  ( ph -> ( G oF T F ) = ( w e. A |-> ( ( G ` w ) T ( F ` w ) ) ) ) | 
						
							| 21 | 1 8 9 14 16 | offval2 |  |-  ( ph -> ( H oF T F ) = ( w e. A |-> ( ( H ` w ) T ( F ` w ) ) ) ) | 
						
							| 22 | 1 18 19 20 21 | offval2 |  |-  ( ph -> ( ( G oF T F ) oF O ( H oF T F ) ) = ( w e. A |-> ( ( ( G ` w ) T ( F ` w ) ) O ( ( H ` w ) T ( F ` w ) ) ) ) ) | 
						
							| 23 | 11 17 22 | 3eqtr4d |  |-  ( ph -> ( ( G oF R H ) oF T F ) = ( ( G oF T F ) oF O ( H oF T F ) ) ) |