| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | caofref.2 |  |-  ( ph -> F : A --> S ) | 
						
							| 3 |  | caofid0.3 |  |-  ( ph -> B e. W ) | 
						
							| 4 |  | caofid0r.5 |  |-  ( ( ph /\ x e. S ) -> ( x R B ) = x ) | 
						
							| 5 | 2 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 6 |  | fnconstg |  |-  ( B e. W -> ( A X. { B } ) Fn A ) | 
						
							| 7 | 3 6 | syl |  |-  ( ph -> ( A X. { B } ) Fn A ) | 
						
							| 8 |  | eqidd |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) | 
						
							| 9 |  | fvconst2g |  |-  ( ( B e. W /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) | 
						
							| 10 | 3 9 | sylan |  |-  ( ( ph /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) | 
						
							| 11 | 4 | ralrimiva |  |-  ( ph -> A. x e. S ( x R B ) = x ) | 
						
							| 12 | 2 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) | 
						
							| 13 |  | oveq1 |  |-  ( x = ( F ` w ) -> ( x R B ) = ( ( F ` w ) R B ) ) | 
						
							| 14 |  | id |  |-  ( x = ( F ` w ) -> x = ( F ` w ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( x = ( F ` w ) -> ( ( x R B ) = x <-> ( ( F ` w ) R B ) = ( F ` w ) ) ) | 
						
							| 16 | 15 | rspccva |  |-  ( ( A. x e. S ( x R B ) = x /\ ( F ` w ) e. S ) -> ( ( F ` w ) R B ) = ( F ` w ) ) | 
						
							| 17 | 11 12 16 | syl2an2r |  |-  ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = ( F ` w ) ) | 
						
							| 18 | 1 5 7 5 8 10 17 | offveq |  |-  ( ph -> ( F oF R ( A X. { B } ) ) = F ) |