| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | caofref.2 |  |-  ( ph -> F : A --> S ) | 
						
							| 3 |  | caofid0.3 |  |-  ( ph -> B e. W ) | 
						
							| 4 |  | caofid1.4 |  |-  ( ph -> C e. X ) | 
						
							| 5 |  | caofid1.5 |  |-  ( ( ph /\ x e. S ) -> ( x R B ) = C ) | 
						
							| 6 | 2 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 7 |  | fnconstg |  |-  ( B e. W -> ( A X. { B } ) Fn A ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> ( A X. { B } ) Fn A ) | 
						
							| 9 |  | fnconstg |  |-  ( C e. X -> ( A X. { C } ) Fn A ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( A X. { C } ) Fn A ) | 
						
							| 11 |  | eqidd |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) | 
						
							| 12 |  | fvconst2g |  |-  ( ( B e. W /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) | 
						
							| 13 | 3 12 | sylan |  |-  ( ( ph /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B ) | 
						
							| 14 | 5 | ralrimiva |  |-  ( ph -> A. x e. S ( x R B ) = C ) | 
						
							| 15 | 2 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) | 
						
							| 16 |  | oveq1 |  |-  ( x = ( F ` w ) -> ( x R B ) = ( ( F ` w ) R B ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( x = ( F ` w ) -> ( ( x R B ) = C <-> ( ( F ` w ) R B ) = C ) ) | 
						
							| 18 | 17 | rspccva |  |-  ( ( A. x e. S ( x R B ) = C /\ ( F ` w ) e. S ) -> ( ( F ` w ) R B ) = C ) | 
						
							| 19 | 14 15 18 | syl2an2r |  |-  ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = C ) | 
						
							| 20 |  | fvconst2g |  |-  ( ( C e. X /\ w e. A ) -> ( ( A X. { C } ) ` w ) = C ) | 
						
							| 21 | 4 20 | sylan |  |-  ( ( ph /\ w e. A ) -> ( ( A X. { C } ) ` w ) = C ) | 
						
							| 22 | 19 21 | eqtr4d |  |-  ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = ( ( A X. { C } ) ` w ) ) | 
						
							| 23 | 1 6 8 10 11 13 22 | offveq |  |-  ( ph -> ( F oF R ( A X. { B } ) ) = ( A X. { C } ) ) |