| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofref.1 |
|- ( ph -> A e. V ) |
| 2 |
|
caofref.2 |
|- ( ph -> F : A --> S ) |
| 3 |
|
caofcom.3 |
|- ( ph -> G : A --> S ) |
| 4 |
|
caofidlcan.4 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( x R y ) = y <-> x = .0. ) ) |
| 5 |
2
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 6 |
3
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 7 |
5 6
|
jca |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) |
| 8 |
4
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( ( x R y ) = y <-> x = .0. ) ) |
| 9 |
|
oveq1 |
|- ( x = ( F ` w ) -> ( x R y ) = ( ( F ` w ) R y ) ) |
| 10 |
9
|
eqeq1d |
|- ( x = ( F ` w ) -> ( ( x R y ) = y <-> ( ( F ` w ) R y ) = y ) ) |
| 11 |
|
eqeq1 |
|- ( x = ( F ` w ) -> ( x = .0. <-> ( F ` w ) = .0. ) ) |
| 12 |
10 11
|
bibi12d |
|- ( x = ( F ` w ) -> ( ( ( x R y ) = y <-> x = .0. ) <-> ( ( ( F ` w ) R y ) = y <-> ( F ` w ) = .0. ) ) ) |
| 13 |
|
oveq2 |
|- ( y = ( G ` w ) -> ( ( F ` w ) R y ) = ( ( F ` w ) R ( G ` w ) ) ) |
| 14 |
|
id |
|- ( y = ( G ` w ) -> y = ( G ` w ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( y = ( G ` w ) -> ( ( ( F ` w ) R y ) = y <-> ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
| 16 |
15
|
bibi1d |
|- ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y ) = y <-> ( F ` w ) = .0. ) <-> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) ) |
| 17 |
12 16
|
rspc2v |
|- ( ( ( F ` w ) e. S /\ ( G ` w ) e. S ) -> ( A. x e. S A. y e. S ( ( x R y ) = y <-> x = .0. ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) ) |
| 18 |
8 17
|
mpan9 |
|- ( ( ph /\ ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) |
| 19 |
7 18
|
syldan |
|- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) |
| 20 |
19
|
ralbidva |
|- ( ph -> ( A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> A. w e. A ( F ` w ) = .0. ) ) |
| 21 |
|
ovexd |
|- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) e. _V ) |
| 22 |
21
|
ralrimiva |
|- ( ph -> A. w e. A ( ( F ` w ) R ( G ` w ) ) e. _V ) |
| 23 |
|
mpteqb |
|- ( A. w e. A ( ( F ` w ) R ( G ` w ) ) e. _V -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
| 25 |
5
|
ralrimiva |
|- ( ph -> A. w e. A ( F ` w ) e. S ) |
| 26 |
|
mpteqb |
|- ( A. w e. A ( F ` w ) e. S -> ( ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) <-> A. w e. A ( F ` w ) = .0. ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) <-> A. w e. A ( F ` w ) = .0. ) ) |
| 28 |
20 24 27
|
3bitr4d |
|- ( ph -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) ) ) |
| 29 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 30 |
3
|
feqmptd |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 31 |
1 5 6 29 30
|
offval2 |
|- ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) |
| 32 |
31 30
|
eqeq12d |
|- ( ph -> ( ( F oF R G ) = G <-> ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) ) ) |
| 33 |
|
fconstmpt |
|- ( A X. { .0. } ) = ( w e. A |-> .0. ) |
| 34 |
33
|
a1i |
|- ( ph -> ( A X. { .0. } ) = ( w e. A |-> .0. ) ) |
| 35 |
29 34
|
eqeq12d |
|- ( ph -> ( F = ( A X. { .0. } ) <-> ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) ) ) |
| 36 |
28 32 35
|
3bitr4d |
|- ( ph -> ( ( F oF R G ) = G <-> F = ( A X. { .0. } ) ) ) |