| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofref.1 |
|- ( ph -> A e. V ) |
| 2 |
|
caofref.2 |
|- ( ph -> F : A --> S ) |
| 3 |
|
caofinv.3 |
|- ( ph -> B e. W ) |
| 4 |
|
caofinv.4 |
|- ( ph -> N : S --> S ) |
| 5 |
|
caofinv.5 |
|- ( ph -> G = ( v e. A |-> ( N ` ( F ` v ) ) ) ) |
| 6 |
|
caofinvl.6 |
|- ( ( ph /\ x e. S ) -> ( ( N ` x ) R x ) = B ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ v e. A ) -> N : S --> S ) |
| 8 |
2
|
ffvelcdmda |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. S ) |
| 9 |
7 8
|
ffvelcdmd |
|- ( ( ph /\ v e. A ) -> ( N ` ( F ` v ) ) e. S ) |
| 10 |
5 9
|
fmpt3d |
|- ( ph -> G : A --> S ) |
| 11 |
10
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 12 |
2
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 13 |
|
fvex |
|- ( N ` ( F ` v ) ) e. _V |
| 14 |
|
eqid |
|- ( v e. A |-> ( N ` ( F ` v ) ) ) = ( v e. A |-> ( N ` ( F ` v ) ) ) |
| 15 |
13 14
|
fnmpti |
|- ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A |
| 16 |
5
|
fneq1d |
|- ( ph -> ( G Fn A <-> ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ph -> G Fn A ) |
| 18 |
|
dffn5 |
|- ( G Fn A <-> G = ( w e. A |-> ( G ` w ) ) ) |
| 19 |
17 18
|
sylib |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 20 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 21 |
1 11 12 19 20
|
offval2 |
|- ( ph -> ( G oF R F ) = ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) ) |
| 22 |
5
|
fveq1d |
|- ( ph -> ( G ` w ) = ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) ) |
| 23 |
|
2fveq3 |
|- ( v = w -> ( N ` ( F ` v ) ) = ( N ` ( F ` w ) ) ) |
| 24 |
|
fvex |
|- ( N ` ( F ` w ) ) e. _V |
| 25 |
23 14 24
|
fvmpt |
|- ( w e. A -> ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) = ( N ` ( F ` w ) ) ) |
| 26 |
22 25
|
sylan9eq |
|- ( ( ph /\ w e. A ) -> ( G ` w ) = ( N ` ( F ` w ) ) ) |
| 27 |
26
|
oveq1d |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
| 28 |
|
fveq2 |
|- ( x = ( F ` w ) -> ( N ` x ) = ( N ` ( F ` w ) ) ) |
| 29 |
|
id |
|- ( x = ( F ` w ) -> x = ( F ` w ) ) |
| 30 |
28 29
|
oveq12d |
|- ( x = ( F ` w ) -> ( ( N ` x ) R x ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
| 31 |
30
|
eqeq1d |
|- ( x = ( F ` w ) -> ( ( ( N ` x ) R x ) = B <-> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) ) |
| 32 |
6
|
ralrimiva |
|- ( ph -> A. x e. S ( ( N ` x ) R x ) = B ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ w e. A ) -> A. x e. S ( ( N ` x ) R x ) = B ) |
| 34 |
31 33 12
|
rspcdva |
|- ( ( ph /\ w e. A ) -> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) |
| 35 |
27 34
|
eqtrd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = B ) |
| 36 |
35
|
mpteq2dva |
|- ( ph -> ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) = ( w e. A |-> B ) ) |
| 37 |
21 36
|
eqtrd |
|- ( ph -> ( G oF R F ) = ( w e. A |-> B ) ) |
| 38 |
|
fconstmpt |
|- ( A X. { B } ) = ( w e. A |-> B ) |
| 39 |
37 38
|
eqtr4di |
|- ( ph -> ( G oF R F ) = ( A X. { B } ) ) |