Step |
Hyp |
Ref |
Expression |
1 |
|
caofref.1 |
|- ( ph -> A e. V ) |
2 |
|
caofref.2 |
|- ( ph -> F : A --> S ) |
3 |
|
caofinv.3 |
|- ( ph -> B e. W ) |
4 |
|
caofinv.4 |
|- ( ph -> N : S --> S ) |
5 |
|
caofinv.5 |
|- ( ph -> G = ( v e. A |-> ( N ` ( F ` v ) ) ) ) |
6 |
|
caofinvl.6 |
|- ( ( ph /\ x e. S ) -> ( ( N ` x ) R x ) = B ) |
7 |
4
|
adantr |
|- ( ( ph /\ v e. A ) -> N : S --> S ) |
8 |
2
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. S ) |
9 |
7 8
|
ffvelrnd |
|- ( ( ph /\ v e. A ) -> ( N ` ( F ` v ) ) e. S ) |
10 |
5 9
|
fmpt3d |
|- ( ph -> G : A --> S ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
12 |
2
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
13 |
|
fvex |
|- ( N ` ( F ` v ) ) e. _V |
14 |
|
eqid |
|- ( v e. A |-> ( N ` ( F ` v ) ) ) = ( v e. A |-> ( N ` ( F ` v ) ) ) |
15 |
13 14
|
fnmpti |
|- ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A |
16 |
5
|
fneq1d |
|- ( ph -> ( G Fn A <-> ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A ) ) |
17 |
15 16
|
mpbiri |
|- ( ph -> G Fn A ) |
18 |
|
dffn5 |
|- ( G Fn A <-> G = ( w e. A |-> ( G ` w ) ) ) |
19 |
17 18
|
sylib |
|- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
20 |
2
|
feqmptd |
|- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
21 |
1 11 12 19 20
|
offval2 |
|- ( ph -> ( G oF R F ) = ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) ) |
22 |
5
|
fveq1d |
|- ( ph -> ( G ` w ) = ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) ) |
23 |
|
2fveq3 |
|- ( v = w -> ( N ` ( F ` v ) ) = ( N ` ( F ` w ) ) ) |
24 |
|
fvex |
|- ( N ` ( F ` w ) ) e. _V |
25 |
23 14 24
|
fvmpt |
|- ( w e. A -> ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) = ( N ` ( F ` w ) ) ) |
26 |
22 25
|
sylan9eq |
|- ( ( ph /\ w e. A ) -> ( G ` w ) = ( N ` ( F ` w ) ) ) |
27 |
26
|
oveq1d |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
28 |
|
fveq2 |
|- ( x = ( F ` w ) -> ( N ` x ) = ( N ` ( F ` w ) ) ) |
29 |
|
id |
|- ( x = ( F ` w ) -> x = ( F ` w ) ) |
30 |
28 29
|
oveq12d |
|- ( x = ( F ` w ) -> ( ( N ` x ) R x ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
31 |
30
|
eqeq1d |
|- ( x = ( F ` w ) -> ( ( ( N ` x ) R x ) = B <-> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) ) |
32 |
6
|
ralrimiva |
|- ( ph -> A. x e. S ( ( N ` x ) R x ) = B ) |
33 |
32
|
adantr |
|- ( ( ph /\ w e. A ) -> A. x e. S ( ( N ` x ) R x ) = B ) |
34 |
31 33 12
|
rspcdva |
|- ( ( ph /\ w e. A ) -> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) |
35 |
27 34
|
eqtrd |
|- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = B ) |
36 |
35
|
mpteq2dva |
|- ( ph -> ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) = ( w e. A |-> B ) ) |
37 |
21 36
|
eqtrd |
|- ( ph -> ( G oF R F ) = ( w e. A |-> B ) ) |
38 |
|
fconstmpt |
|- ( A X. { B } ) = ( w e. A |-> B ) |
39 |
37 38
|
eqtr4di |
|- ( ph -> ( G oF R F ) = ( A X. { B } ) ) |