| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caofref.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | caofref.2 |  |-  ( ph -> F : A --> S ) | 
						
							| 3 |  | caofref.3 |  |-  ( ( ph /\ x e. S ) -> x R x ) | 
						
							| 4 |  | id |  |-  ( x = ( F ` w ) -> x = ( F ` w ) ) | 
						
							| 5 | 4 4 | breq12d |  |-  ( x = ( F ` w ) -> ( x R x <-> ( F ` w ) R ( F ` w ) ) ) | 
						
							| 6 | 3 | ralrimiva |  |-  ( ph -> A. x e. S x R x ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ w e. A ) -> A. x e. S x R x ) | 
						
							| 8 | 2 | ffvelcdmda |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) | 
						
							| 9 | 5 7 8 | rspcdva |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) R ( F ` w ) ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( ph -> A. w e. A ( F ` w ) R ( F ` w ) ) | 
						
							| 11 | 2 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 12 |  | inidm |  |-  ( A i^i A ) = A | 
						
							| 13 |  | eqidd |  |-  ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) | 
						
							| 14 | 11 11 1 1 12 13 13 | ofrfval |  |-  ( ph -> ( F oR R F <-> A. w e. A ( F ` w ) R ( F ` w ) ) ) | 
						
							| 15 | 10 14 | mpbird |  |-  ( ph -> F oR R F ) |