Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caov.1 | |- A e. _V |
|
caov.2 | |- B e. _V |
||
caov.3 | |- C e. _V |
||
caov.com | |- ( x F y ) = ( y F x ) |
||
caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
||
Assertion | caov12 | |- ( A F ( B F C ) ) = ( B F ( A F C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | |- A e. _V |
|
2 | caov.2 | |- B e. _V |
|
3 | caov.3 | |- C e. _V |
|
4 | caov.com | |- ( x F y ) = ( y F x ) |
|
5 | caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
|
6 | 1 2 4 | caovcom | |- ( A F B ) = ( B F A ) |
7 | 6 | oveq1i | |- ( ( A F B ) F C ) = ( ( B F A ) F C ) |
8 | 1 2 3 5 | caovass | |- ( ( A F B ) F C ) = ( A F ( B F C ) ) |
9 | 2 1 3 5 | caovass | |- ( ( B F A ) F C ) = ( B F ( A F C ) ) |
10 | 7 8 9 | 3eqtr3i | |- ( A F ( B F C ) ) = ( B F ( A F C ) ) |