Metamath Proof Explorer


Theorem caov12

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1
|- A e. _V
caov.2
|- B e. _V
caov.3
|- C e. _V
caov.com
|- ( x F y ) = ( y F x )
caov.ass
|- ( ( x F y ) F z ) = ( x F ( y F z ) )
Assertion caov12
|- ( A F ( B F C ) ) = ( B F ( A F C ) )

Proof

Step Hyp Ref Expression
1 caov.1
 |-  A e. _V
2 caov.2
 |-  B e. _V
3 caov.3
 |-  C e. _V
4 caov.com
 |-  ( x F y ) = ( y F x )
5 caov.ass
 |-  ( ( x F y ) F z ) = ( x F ( y F z ) )
6 1 2 4 caovcom
 |-  ( A F B ) = ( B F A )
7 6 oveq1i
 |-  ( ( A F B ) F C ) = ( ( B F A ) F C )
8 1 2 3 5 caovass
 |-  ( ( A F B ) F C ) = ( A F ( B F C ) )
9 2 1 3 5 caovass
 |-  ( ( B F A ) F C ) = ( B F ( A F C ) )
10 7 8 9 3eqtr3i
 |-  ( A F ( B F C ) ) = ( B F ( A F C ) )