| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovd.1 |  |-  ( ph -> A e. S ) | 
						
							| 2 |  | caovd.2 |  |-  ( ph -> B e. S ) | 
						
							| 3 |  | caovd.3 |  |-  ( ph -> C e. S ) | 
						
							| 4 |  | caovd.com |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) | 
						
							| 5 |  | caovd.ass |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) | 
						
							| 6 | 4 1 3 | caovcomd |  |-  ( ph -> ( A F C ) = ( C F A ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ph -> ( ( A F C ) F B ) = ( ( C F A ) F B ) ) | 
						
							| 8 | 1 2 3 4 5 | caov32d |  |-  ( ph -> ( ( A F B ) F C ) = ( ( A F C ) F B ) ) | 
						
							| 9 | 3 2 1 4 5 | caov32d |  |-  ( ph -> ( ( C F B ) F A ) = ( ( C F A ) F B ) ) | 
						
							| 10 | 7 8 9 | 3eqtr4d |  |-  ( ph -> ( ( A F B ) F C ) = ( ( C F B ) F A ) ) |