Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caov.1 | |- A e. _V | |
| caov.2 | |- B e. _V | ||
| caov.3 | |- C e. _V | ||
| caov.com | |- ( x F y ) = ( y F x ) | ||
| caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) | ||
| Assertion | caov32 | |- ( ( A F B ) F C ) = ( ( A F C ) F B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caov.1 | |- A e. _V | |
| 2 | caov.2 | |- B e. _V | |
| 3 | caov.3 | |- C e. _V | |
| 4 | caov.com | |- ( x F y ) = ( y F x ) | |
| 5 | caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) | |
| 6 | 2 3 4 | caovcom | |- ( B F C ) = ( C F B ) | 
| 7 | 6 | oveq2i | |- ( A F ( B F C ) ) = ( A F ( C F B ) ) | 
| 8 | 1 2 3 5 | caovass | |- ( ( A F B ) F C ) = ( A F ( B F C ) ) | 
| 9 | 1 3 2 5 | caovass | |- ( ( A F C ) F B ) = ( A F ( C F B ) ) | 
| 10 | 7 8 9 | 3eqtr4i | |- ( ( A F B ) F C ) = ( ( A F C ) F B ) |