Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovd.1 | |- ( ph -> A e. S ) | |
| caovd.2 | |- ( ph -> B e. S ) | ||
| caovd.3 | |- ( ph -> C e. S ) | ||
| caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) | ||
| caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) | ||
| Assertion | caov32d | |- ( ph -> ( ( A F B ) F C ) = ( ( A F C ) F B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovd.1 | |- ( ph -> A e. S ) | |
| 2 | caovd.2 | |- ( ph -> B e. S ) | |
| 3 | caovd.3 | |- ( ph -> C e. S ) | |
| 4 | caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) | |
| 5 | caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) | |
| 6 | 4 2 3 | caovcomd | |- ( ph -> ( B F C ) = ( C F B ) ) | 
| 7 | 6 | oveq2d | |- ( ph -> ( A F ( B F C ) ) = ( A F ( C F B ) ) ) | 
| 8 | 5 1 2 3 | caovassd | |- ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) | 
| 9 | 5 1 3 2 | caovassd | |- ( ph -> ( ( A F C ) F B ) = ( A F ( C F B ) ) ) | 
| 10 | 7 8 9 | 3eqtr4d | |- ( ph -> ( ( A F B ) F C ) = ( ( A F C ) F B ) ) |