| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caov.1 |
|- A e. _V |
| 2 |
|
caov.2 |
|- B e. _V |
| 3 |
|
caov.3 |
|- C e. _V |
| 4 |
|
caov.com |
|- ( x F y ) = ( y F x ) |
| 5 |
|
caov.ass |
|- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
| 6 |
|
caov.4 |
|- D e. _V |
| 7 |
2 3 6 4 5
|
caov12 |
|- ( B F ( C F D ) ) = ( C F ( B F D ) ) |
| 8 |
7
|
oveq2i |
|- ( A F ( B F ( C F D ) ) ) = ( A F ( C F ( B F D ) ) ) |
| 9 |
|
ovex |
|- ( C F D ) e. _V |
| 10 |
1 2 9 5
|
caovass |
|- ( ( A F B ) F ( C F D ) ) = ( A F ( B F ( C F D ) ) ) |
| 11 |
|
ovex |
|- ( B F D ) e. _V |
| 12 |
1 3 11 5
|
caovass |
|- ( ( A F C ) F ( B F D ) ) = ( A F ( C F ( B F D ) ) ) |
| 13 |
8 10 12
|
3eqtr4i |
|- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) ) |