Metamath Proof Explorer


Theorem caov4

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1
|- A e. _V
caov.2
|- B e. _V
caov.3
|- C e. _V
caov.com
|- ( x F y ) = ( y F x )
caov.ass
|- ( ( x F y ) F z ) = ( x F ( y F z ) )
caov.4
|- D e. _V
Assertion caov4
|- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) )

Proof

Step Hyp Ref Expression
1 caov.1
 |-  A e. _V
2 caov.2
 |-  B e. _V
3 caov.3
 |-  C e. _V
4 caov.com
 |-  ( x F y ) = ( y F x )
5 caov.ass
 |-  ( ( x F y ) F z ) = ( x F ( y F z ) )
6 caov.4
 |-  D e. _V
7 2 3 6 4 5 caov12
 |-  ( B F ( C F D ) ) = ( C F ( B F D ) )
8 7 oveq2i
 |-  ( A F ( B F ( C F D ) ) ) = ( A F ( C F ( B F D ) ) )
9 ovex
 |-  ( C F D ) e. _V
10 1 2 9 5 caovass
 |-  ( ( A F B ) F ( C F D ) ) = ( A F ( B F ( C F D ) ) )
11 ovex
 |-  ( B F D ) e. _V
12 1 3 11 5 caovass
 |-  ( ( A F C ) F ( B F D ) ) = ( A F ( C F ( B F D ) ) )
13 8 10 12 3eqtr4i
 |-  ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) )