Metamath Proof Explorer


Theorem caov42

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1
|- A e. _V
caov.2
|- B e. _V
caov.3
|- C e. _V
caov.com
|- ( x F y ) = ( y F x )
caov.ass
|- ( ( x F y ) F z ) = ( x F ( y F z ) )
caov.4
|- D e. _V
Assertion caov42
|- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) )

Proof

Step Hyp Ref Expression
1 caov.1
 |-  A e. _V
2 caov.2
 |-  B e. _V
3 caov.3
 |-  C e. _V
4 caov.com
 |-  ( x F y ) = ( y F x )
5 caov.ass
 |-  ( ( x F y ) F z ) = ( x F ( y F z ) )
6 caov.4
 |-  D e. _V
7 1 2 3 4 5 6 caov4
 |-  ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) )
8 2 6 4 caovcom
 |-  ( B F D ) = ( D F B )
9 8 oveq2i
 |-  ( ( A F C ) F ( B F D ) ) = ( ( A F C ) F ( D F B ) )
10 7 9 eqtri
 |-  ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) )