Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caov.1 | |- A e. _V |
|
| caov.2 | |- B e. _V |
||
| caov.3 | |- C e. _V |
||
| caov.com | |- ( x F y ) = ( y F x ) |
||
| caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
||
| caov.4 | |- D e. _V |
||
| Assertion | caov42 | |- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caov.1 | |- A e. _V |
|
| 2 | caov.2 | |- B e. _V |
|
| 3 | caov.3 | |- C e. _V |
|
| 4 | caov.com | |- ( x F y ) = ( y F x ) |
|
| 5 | caov.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
|
| 6 | caov.4 | |- D e. _V |
|
| 7 | 1 2 3 4 5 6 | caov4 | |- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) ) |
| 8 | 2 6 4 | caovcom | |- ( B F D ) = ( D F B ) |
| 9 | 8 | oveq2i | |- ( ( A F C ) F ( B F D ) ) = ( ( A F C ) F ( D F B ) ) |
| 10 | 7 9 | eqtri | |- ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) ) |