Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovd.1 | |- ( ph -> A e. S ) |
|
caovd.2 | |- ( ph -> B e. S ) |
||
caovd.3 | |- ( ph -> C e. S ) |
||
caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
||
caovd.4 | |- ( ph -> D e. S ) |
||
caovd.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
||
Assertion | caov42d | |- ( ph -> ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovd.1 | |- ( ph -> A e. S ) |
|
2 | caovd.2 | |- ( ph -> B e. S ) |
|
3 | caovd.3 | |- ( ph -> C e. S ) |
|
4 | caovd.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
5 | caovd.ass | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
6 | caovd.4 | |- ( ph -> D e. S ) |
|
7 | caovd.cl | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
|
8 | 1 2 3 4 5 6 7 | caov4d | |- ( ph -> ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( B F D ) ) ) |
9 | 4 2 6 | caovcomd | |- ( ph -> ( B F D ) = ( D F B ) ) |
10 | 9 | oveq2d | |- ( ph -> ( ( A F C ) F ( B F D ) ) = ( ( A F C ) F ( D F B ) ) ) |
11 | 8 10 | eqtrd | |- ( ph -> ( ( A F B ) F ( C F D ) ) = ( ( A F C ) F ( D F B ) ) ) |