Metamath Proof Explorer


Theorem caovassd

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovassg.1
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) )
caovassd.2
|- ( ph -> A e. S )
caovassd.3
|- ( ph -> B e. S )
caovassd.4
|- ( ph -> C e. S )
Assertion caovassd
|- ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) )

Proof

Step Hyp Ref Expression
1 caovassg.1
 |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) )
2 caovassd.2
 |-  ( ph -> A e. S )
3 caovassd.3
 |-  ( ph -> B e. S )
4 caovassd.4
 |-  ( ph -> C e. S )
5 id
 |-  ( ph -> ph )
6 1 caovassg
 |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) )