Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovassg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
| caovassd.2 | |- ( ph -> A e. S ) |
||
| caovassd.3 | |- ( ph -> B e. S ) |
||
| caovassd.4 | |- ( ph -> C e. S ) |
||
| Assertion | caovassd | |- ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovassg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
| 2 | caovassd.2 | |- ( ph -> A e. S ) |
|
| 3 | caovassd.3 | |- ( ph -> B e. S ) |
|
| 4 | caovassd.4 | |- ( ph -> C e. S ) |
|
| 5 | id | |- ( ph -> ph ) |
|
| 6 | 1 | caovassg | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |