Step |
Hyp |
Ref |
Expression |
1 |
|
caovassg.1 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
2 |
1
|
ralrimivvva |
|- ( ph -> A. x e. S A. y e. S A. z e. S ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
3 |
|
oveq1 |
|- ( x = A -> ( x F y ) = ( A F y ) ) |
4 |
3
|
oveq1d |
|- ( x = A -> ( ( x F y ) F z ) = ( ( A F y ) F z ) ) |
5 |
|
oveq1 |
|- ( x = A -> ( x F ( y F z ) ) = ( A F ( y F z ) ) ) |
6 |
4 5
|
eqeq12d |
|- ( x = A -> ( ( ( x F y ) F z ) = ( x F ( y F z ) ) <-> ( ( A F y ) F z ) = ( A F ( y F z ) ) ) ) |
7 |
|
oveq2 |
|- ( y = B -> ( A F y ) = ( A F B ) ) |
8 |
7
|
oveq1d |
|- ( y = B -> ( ( A F y ) F z ) = ( ( A F B ) F z ) ) |
9 |
|
oveq1 |
|- ( y = B -> ( y F z ) = ( B F z ) ) |
10 |
9
|
oveq2d |
|- ( y = B -> ( A F ( y F z ) ) = ( A F ( B F z ) ) ) |
11 |
8 10
|
eqeq12d |
|- ( y = B -> ( ( ( A F y ) F z ) = ( A F ( y F z ) ) <-> ( ( A F B ) F z ) = ( A F ( B F z ) ) ) ) |
12 |
|
oveq2 |
|- ( z = C -> ( ( A F B ) F z ) = ( ( A F B ) F C ) ) |
13 |
|
oveq2 |
|- ( z = C -> ( B F z ) = ( B F C ) ) |
14 |
13
|
oveq2d |
|- ( z = C -> ( A F ( B F z ) ) = ( A F ( B F C ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( z = C -> ( ( ( A F B ) F z ) = ( A F ( B F z ) ) <-> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) ) |
16 |
6 11 15
|
rspc3v |
|- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x F y ) F z ) = ( x F ( y F z ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) ) |
17 |
2 16
|
mpan9 |
|- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |