Step |
Hyp |
Ref |
Expression |
1 |
|
caovcan.1 |
|- C e. _V |
2 |
|
caovcan.2 |
|- ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) |
3 |
|
oveq1 |
|- ( x = A -> ( x F y ) = ( A F y ) ) |
4 |
|
oveq1 |
|- ( x = A -> ( x F C ) = ( A F C ) ) |
5 |
3 4
|
eqeq12d |
|- ( x = A -> ( ( x F y ) = ( x F C ) <-> ( A F y ) = ( A F C ) ) ) |
6 |
5
|
imbi1d |
|- ( x = A -> ( ( ( x F y ) = ( x F C ) -> y = C ) <-> ( ( A F y ) = ( A F C ) -> y = C ) ) ) |
7 |
|
oveq2 |
|- ( y = B -> ( A F y ) = ( A F B ) ) |
8 |
7
|
eqeq1d |
|- ( y = B -> ( ( A F y ) = ( A F C ) <-> ( A F B ) = ( A F C ) ) ) |
9 |
|
eqeq1 |
|- ( y = B -> ( y = C <-> B = C ) ) |
10 |
8 9
|
imbi12d |
|- ( y = B -> ( ( ( A F y ) = ( A F C ) -> y = C ) <-> ( ( A F B ) = ( A F C ) -> B = C ) ) ) |
11 |
|
oveq2 |
|- ( z = C -> ( x F z ) = ( x F C ) ) |
12 |
11
|
eqeq2d |
|- ( z = C -> ( ( x F y ) = ( x F z ) <-> ( x F y ) = ( x F C ) ) ) |
13 |
|
eqeq2 |
|- ( z = C -> ( y = z <-> y = C ) ) |
14 |
12 13
|
imbi12d |
|- ( z = C -> ( ( ( x F y ) = ( x F z ) -> y = z ) <-> ( ( x F y ) = ( x F C ) -> y = C ) ) ) |
15 |
14
|
imbi2d |
|- ( z = C -> ( ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F z ) -> y = z ) ) <-> ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) ) ) |
16 |
1 15 2
|
vtocl |
|- ( ( x e. S /\ y e. S ) -> ( ( x F y ) = ( x F C ) -> y = C ) ) |
17 |
6 10 16
|
vtocl2ga |
|- ( ( A e. S /\ B e. S ) -> ( ( A F B ) = ( A F C ) -> B = C ) ) |