Metamath Proof Explorer


Theorem caovcand

Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) )
caovcand.2
|- ( ph -> A e. T )
caovcand.3
|- ( ph -> B e. S )
caovcand.4
|- ( ph -> C e. S )
Assertion caovcand
|- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) )

Proof

Step Hyp Ref Expression
1 caovcang.1
 |-  ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) )
2 caovcand.2
 |-  ( ph -> A e. T )
3 caovcand.3
 |-  ( ph -> B e. S )
4 caovcand.4
 |-  ( ph -> C e. S )
5 id
 |-  ( ph -> ph )
6 1 caovcang
 |-  ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) )