Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
caovcand.2 | |- ( ph -> A e. T ) |
||
caovcand.3 | |- ( ph -> B e. S ) |
||
caovcand.4 | |- ( ph -> C e. S ) |
||
Assertion | caovcand | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
2 | caovcand.2 | |- ( ph -> A e. T ) |
|
3 | caovcand.3 | |- ( ph -> B e. S ) |
|
4 | caovcand.4 | |- ( ph -> C e. S ) |
|
5 | id | |- ( ph -> ph ) |
|
6 | 1 | caovcang | |- ( ( ph /\ ( A e. T /\ B e. S /\ C e. S ) ) -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |