Metamath Proof Explorer


Theorem caovcanrd

Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) )
caovcand.2
|- ( ph -> A e. T )
caovcand.3
|- ( ph -> B e. S )
caovcand.4
|- ( ph -> C e. S )
caovcanrd.5
|- ( ph -> A e. S )
caovcanrd.6
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) )
Assertion caovcanrd
|- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) )

Proof

Step Hyp Ref Expression
1 caovcang.1
 |-  ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) )
2 caovcand.2
 |-  ( ph -> A e. T )
3 caovcand.3
 |-  ( ph -> B e. S )
4 caovcand.4
 |-  ( ph -> C e. S )
5 caovcanrd.5
 |-  ( ph -> A e. S )
6 caovcanrd.6
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) )
7 6 5 3 caovcomd
 |-  ( ph -> ( A F B ) = ( B F A ) )
8 6 5 4 caovcomd
 |-  ( ph -> ( A F C ) = ( C F A ) )
9 7 8 eqeq12d
 |-  ( ph -> ( ( A F B ) = ( A F C ) <-> ( B F A ) = ( C F A ) ) )
10 1 2 3 4 caovcand
 |-  ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) )
11 9 10 bitr3d
 |-  ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) )