| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovcang.1 |
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
| 2 |
|
caovcand.2 |
|- ( ph -> A e. T ) |
| 3 |
|
caovcand.3 |
|- ( ph -> B e. S ) |
| 4 |
|
caovcand.4 |
|- ( ph -> C e. S ) |
| 5 |
|
caovcanrd.5 |
|- ( ph -> A e. S ) |
| 6 |
|
caovcanrd.6 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
| 7 |
6 5 3
|
caovcomd |
|- ( ph -> ( A F B ) = ( B F A ) ) |
| 8 |
6 5 4
|
caovcomd |
|- ( ph -> ( A F C ) = ( C F A ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( ph -> ( ( A F B ) = ( A F C ) <-> ( B F A ) = ( C F A ) ) ) |
| 10 |
1 2 3 4
|
caovcand |
|- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
| 11 |
9 10
|
bitr3d |
|- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |