Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
caovcand.2 | |- ( ph -> A e. T ) |
||
caovcand.3 | |- ( ph -> B e. S ) |
||
caovcand.4 | |- ( ph -> C e. S ) |
||
caovcanrd.5 | |- ( ph -> A e. S ) |
||
caovcanrd.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
Assertion | caovcanrd | |- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcang.1 | |- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x F y ) = ( x F z ) <-> y = z ) ) |
|
2 | caovcand.2 | |- ( ph -> A e. T ) |
|
3 | caovcand.3 | |- ( ph -> B e. S ) |
|
4 | caovcand.4 | |- ( ph -> C e. S ) |
|
5 | caovcanrd.5 | |- ( ph -> A e. S ) |
|
6 | caovcanrd.6 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
7 | 6 5 3 | caovcomd | |- ( ph -> ( A F B ) = ( B F A ) ) |
8 | 6 5 4 | caovcomd | |- ( ph -> ( A F C ) = ( C F A ) ) |
9 | 7 8 | eqeq12d | |- ( ph -> ( ( A F B ) = ( A F C ) <-> ( B F A ) = ( C F A ) ) ) |
10 | 1 2 3 4 | caovcand | |- ( ph -> ( ( A F B ) = ( A F C ) <-> B = C ) ) |
11 | 9 10 | bitr3d | |- ( ph -> ( ( B F A ) = ( C F A ) <-> B = C ) ) |