Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovcl.1 | |- ( ( x e. S /\ y e. S ) -> ( x F y ) e. S ) |
|
| Assertion | caovcl | |- ( ( A e. S /\ B e. S ) -> ( A F B ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcl.1 | |- ( ( x e. S /\ y e. S ) -> ( x F y ) e. S ) |
|
| 2 | tru | |- T. |
|
| 3 | 1 | adantl | |- ( ( T. /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S ) |
| 4 | 3 | caovclg | |- ( ( T. /\ ( A e. S /\ B e. S ) ) -> ( A F B ) e. S ) |
| 5 | 2 4 | mpan | |- ( ( A e. S /\ B e. S ) -> ( A F B ) e. S ) |