Metamath Proof Explorer


Theorem caovcl

Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovcl.1
|- ( ( x e. S /\ y e. S ) -> ( x F y ) e. S )
Assertion caovcl
|- ( ( A e. S /\ B e. S ) -> ( A F B ) e. S )

Proof

Step Hyp Ref Expression
1 caovcl.1
 |-  ( ( x e. S /\ y e. S ) -> ( x F y ) e. S )
2 tru
 |-  T.
3 1 adantl
 |-  ( ( T. /\ ( x e. S /\ y e. S ) ) -> ( x F y ) e. S )
4 3 caovclg
 |-  ( ( T. /\ ( A e. S /\ B e. S ) ) -> ( A F B ) e. S )
5 2 4 mpan
 |-  ( ( A e. S /\ B e. S ) -> ( A F B ) e. S )