Metamath Proof Explorer


Theorem caovcomd

Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcomg.1
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) )
caovcomd.2
|- ( ph -> A e. S )
caovcomd.3
|- ( ph -> B e. S )
Assertion caovcomd
|- ( ph -> ( A F B ) = ( B F A ) )

Proof

Step Hyp Ref Expression
1 caovcomg.1
 |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) )
2 caovcomd.2
 |-  ( ph -> A e. S )
3 caovcomd.3
 |-  ( ph -> B e. S )
4 id
 |-  ( ph -> ph )
5 1 caovcomg
 |-  ( ( ph /\ ( A e. S /\ B e. S ) ) -> ( A F B ) = ( B F A ) )
6 4 2 3 5 syl12anc
 |-  ( ph -> ( A F B ) = ( B F A ) )