Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovcomg.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
caovcomd.2 | |- ( ph -> A e. S ) |
||
caovcomd.3 | |- ( ph -> B e. S ) |
||
Assertion | caovcomd | |- ( ph -> ( A F B ) = ( B F A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovcomg.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
2 | caovcomd.2 | |- ( ph -> A e. S ) |
|
3 | caovcomd.3 | |- ( ph -> B e. S ) |
|
4 | id | |- ( ph -> ph ) |
|
5 | 1 | caovcomg | |- ( ( ph /\ ( A e. S /\ B e. S ) ) -> ( A F B ) = ( B F A ) ) |
6 | 4 2 3 5 | syl12anc | |- ( ph -> ( A F B ) = ( B F A ) ) |