Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
|
caovdid.2 | |- ( ph -> A e. K ) |
||
caovdid.3 | |- ( ph -> B e. S ) |
||
caovdid.4 | |- ( ph -> C e. S ) |
||
Assertion | caovdid | |- ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
|
2 | caovdid.2 | |- ( ph -> A e. K ) |
|
3 | caovdid.3 | |- ( ph -> B e. S ) |
|
4 | caovdid.4 | |- ( ph -> C e. S ) |
|
5 | id | |- ( ph -> ph ) |
|
6 | 1 | caovdig | |- ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |
7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |