Metamath Proof Explorer


Theorem caovdid

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdig.1
|- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) )
caovdid.2
|- ( ph -> A e. K )
caovdid.3
|- ( ph -> B e. S )
caovdid.4
|- ( ph -> C e. S )
Assertion caovdid
|- ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) )

Proof

Step Hyp Ref Expression
1 caovdig.1
 |-  ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) )
2 caovdid.2
 |-  ( ph -> A e. K )
3 caovdid.3
 |-  ( ph -> B e. S )
4 caovdid.4
 |-  ( ph -> C e. S )
5 id
 |-  ( ph -> ph )
6 1 caovdig
 |-  ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) )