Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) | |
| caovdid.2 | |- ( ph -> A e. K ) | ||
| caovdid.3 | |- ( ph -> B e. S ) | ||
| caovdid.4 | |- ( ph -> C e. S ) | ||
| Assertion | caovdid | |- ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovdig.1 | |- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) | |
| 2 | caovdid.2 | |- ( ph -> A e. K ) | |
| 3 | caovdid.3 | |- ( ph -> B e. S ) | |
| 4 | caovdid.4 | |- ( ph -> C e. S ) | |
| 5 | id | |- ( ph -> ph ) | |
| 6 | 1 | caovdig | |- ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |