| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovdir.1 |
|- A e. _V |
| 2 |
|
caovdir.2 |
|- B e. _V |
| 3 |
|
caovdir.3 |
|- C e. _V |
| 4 |
|
caovdir.com |
|- ( x G y ) = ( y G x ) |
| 5 |
|
caovdir.distr |
|- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
| 6 |
|
caovdl.4 |
|- D e. _V |
| 7 |
|
caovdl.5 |
|- H e. _V |
| 8 |
|
caovdl.ass |
|- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
| 9 |
|
ovex |
|- ( A G C ) e. _V |
| 10 |
|
ovex |
|- ( B G D ) e. _V |
| 11 |
9 10 7 4 5
|
caovdir |
|- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) |
| 12 |
1 3 7 8
|
caovass |
|- ( ( A G C ) G H ) = ( A G ( C G H ) ) |
| 13 |
2 6 7 8
|
caovass |
|- ( ( B G D ) G H ) = ( B G ( D G H ) ) |
| 14 |
12 13
|
oveq12i |
|- ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |
| 15 |
11 14
|
eqtri |
|- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |