Metamath Proof Explorer


Theorem caovdilem

Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caovdir.1
|- A e. _V
caovdir.2
|- B e. _V
caovdir.3
|- C e. _V
caovdir.com
|- ( x G y ) = ( y G x )
caovdir.distr
|- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) )
caovdl.4
|- D e. _V
caovdl.5
|- H e. _V
caovdl.ass
|- ( ( x G y ) G z ) = ( x G ( y G z ) )
Assertion caovdilem
|- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) )

Proof

Step Hyp Ref Expression
1 caovdir.1
 |-  A e. _V
2 caovdir.2
 |-  B e. _V
3 caovdir.3
 |-  C e. _V
4 caovdir.com
 |-  ( x G y ) = ( y G x )
5 caovdir.distr
 |-  ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) )
6 caovdl.4
 |-  D e. _V
7 caovdl.5
 |-  H e. _V
8 caovdl.ass
 |-  ( ( x G y ) G z ) = ( x G ( y G z ) )
9 ovex
 |-  ( A G C ) e. _V
10 ovex
 |-  ( B G D ) e. _V
11 9 10 7 4 5 caovdir
 |-  ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( ( A G C ) G H ) F ( ( B G D ) G H ) )
12 1 3 7 8 caovass
 |-  ( ( A G C ) G H ) = ( A G ( C G H ) )
13 2 6 7 8 caovass
 |-  ( ( B G D ) G H ) = ( B G ( D G H ) )
14 12 13 oveq12i
 |-  ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) )
15 11 14 eqtri
 |-  ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) )