Metamath Proof Explorer


Theorem caovdird

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdirg.1
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) )
caovdird.2
|- ( ph -> A e. S )
caovdird.3
|- ( ph -> B e. S )
caovdird.4
|- ( ph -> C e. K )
Assertion caovdird
|- ( ph -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) )

Proof

Step Hyp Ref Expression
1 caovdirg.1
 |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) )
2 caovdird.2
 |-  ( ph -> A e. S )
3 caovdird.3
 |-  ( ph -> B e. S )
4 caovdird.4
 |-  ( ph -> C e. K )
5 id
 |-  ( ph -> ph )
6 1 caovdirg
 |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. K ) ) -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) )