Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdirg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) ) | |
| caovdird.2 | |- ( ph -> A e. S ) | ||
| caovdird.3 | |- ( ph -> B e. S ) | ||
| caovdird.4 | |- ( ph -> C e. K ) | ||
| Assertion | caovdird | |- ( ph -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovdirg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) ) | |
| 2 | caovdird.2 | |- ( ph -> A e. S ) | |
| 3 | caovdird.3 | |- ( ph -> B e. S ) | |
| 4 | caovdird.4 | |- ( ph -> C e. K ) | |
| 5 | id | |- ( ph -> ph ) | |
| 6 | 1 | caovdirg | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. K ) ) -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) |