| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovdirg.1 |  |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. K ) ) -> ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) ) | 
						
							| 2 | 1 | ralrimivvva |  |-  ( ph -> A. x e. S A. y e. S A. z e. K ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( x = A -> ( x F y ) = ( A F y ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( x = A -> ( ( x F y ) G z ) = ( ( A F y ) G z ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = A -> ( x G z ) = ( A G z ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( x = A -> ( ( x G z ) H ( y G z ) ) = ( ( A G z ) H ( y G z ) ) ) | 
						
							| 7 | 4 6 | eqeq12d |  |-  ( x = A -> ( ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) <-> ( ( A F y ) G z ) = ( ( A G z ) H ( y G z ) ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( y = B -> ( A F y ) = ( A F B ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( y = B -> ( ( A F y ) G z ) = ( ( A F B ) G z ) ) | 
						
							| 10 |  | oveq1 |  |-  ( y = B -> ( y G z ) = ( B G z ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( y = B -> ( ( A G z ) H ( y G z ) ) = ( ( A G z ) H ( B G z ) ) ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( y = B -> ( ( ( A F y ) G z ) = ( ( A G z ) H ( y G z ) ) <-> ( ( A F B ) G z ) = ( ( A G z ) H ( B G z ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( z = C -> ( ( A F B ) G z ) = ( ( A F B ) G C ) ) | 
						
							| 14 |  | oveq2 |  |-  ( z = C -> ( A G z ) = ( A G C ) ) | 
						
							| 15 |  | oveq2 |  |-  ( z = C -> ( B G z ) = ( B G C ) ) | 
						
							| 16 | 14 15 | oveq12d |  |-  ( z = C -> ( ( A G z ) H ( B G z ) ) = ( ( A G C ) H ( B G C ) ) ) | 
						
							| 17 | 13 16 | eqeq12d |  |-  ( z = C -> ( ( ( A F B ) G z ) = ( ( A G z ) H ( B G z ) ) <-> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) ) | 
						
							| 18 | 7 12 17 | rspc3v |  |-  ( ( A e. S /\ B e. S /\ C e. K ) -> ( A. x e. S A. y e. S A. z e. K ( ( x F y ) G z ) = ( ( x G z ) H ( y G z ) ) -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) ) | 
						
							| 19 | 2 18 | mpan9 |  |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. K ) ) -> ( ( A F B ) G C ) = ( ( A G C ) H ( B G C ) ) ) |