| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovmo.2 |  |-  B e. S | 
						
							| 2 |  | caovmo.dom |  |-  dom F = ( S X. S ) | 
						
							| 3 |  | caovmo.3 |  |-  -. (/) e. S | 
						
							| 4 |  | caovmo.com |  |-  ( x F y ) = ( y F x ) | 
						
							| 5 |  | caovmo.ass |  |-  ( ( x F y ) F z ) = ( x F ( y F z ) ) | 
						
							| 6 |  | caovmo.id |  |-  ( x e. S -> ( x F B ) = x ) | 
						
							| 7 |  | oveq1 |  |-  ( u = A -> ( u F w ) = ( A F w ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( u = A -> ( ( u F w ) = B <-> ( A F w ) = B ) ) | 
						
							| 9 | 8 | mobidv |  |-  ( u = A -> ( E* w ( u F w ) = B <-> E* w ( A F w ) = B ) ) | 
						
							| 10 |  | oveq2 |  |-  ( w = v -> ( u F w ) = ( u F v ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( w = v -> ( ( u F w ) = B <-> ( u F v ) = B ) ) | 
						
							| 12 | 11 | mo4 |  |-  ( E* w ( u F w ) = B <-> A. w A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) = B ) | 
						
							| 14 | 13 | oveq2d |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( w F B ) ) | 
						
							| 15 |  | simpl |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) = B ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( ( u F w ) F v ) = ( B F v ) ) | 
						
							| 17 |  | vex |  |-  u e. _V | 
						
							| 18 |  | vex |  |-  w e. _V | 
						
							| 19 |  | vex |  |-  v e. _V | 
						
							| 20 | 17 18 19 5 | caovass |  |-  ( ( u F w ) F v ) = ( u F ( w F v ) ) | 
						
							| 21 | 17 18 19 4 5 | caov12 |  |-  ( u F ( w F v ) ) = ( w F ( u F v ) ) | 
						
							| 22 | 20 21 | eqtri |  |-  ( ( u F w ) F v ) = ( w F ( u F v ) ) | 
						
							| 23 | 1 | elexi |  |-  B e. _V | 
						
							| 24 | 23 19 4 | caovcom |  |-  ( B F v ) = ( v F B ) | 
						
							| 25 | 16 22 24 | 3eqtr3g |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( v F B ) ) | 
						
							| 26 | 14 25 | eqtr3d |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = ( v F B ) ) | 
						
							| 27 | 15 1 | eqeltrdi |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) e. S ) | 
						
							| 28 | 2 3 | ndmovrcl |  |-  ( ( u F w ) e. S -> ( u e. S /\ w e. S ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ w e. S ) ) | 
						
							| 30 |  | oveq1 |  |-  ( x = w -> ( x F B ) = ( w F B ) ) | 
						
							| 31 |  | id |  |-  ( x = w -> x = w ) | 
						
							| 32 | 30 31 | eqeq12d |  |-  ( x = w -> ( ( x F B ) = x <-> ( w F B ) = w ) ) | 
						
							| 33 | 32 6 | vtoclga |  |-  ( w e. S -> ( w F B ) = w ) | 
						
							| 34 | 29 33 | simpl2im |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = w ) | 
						
							| 35 | 13 1 | eqeltrdi |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) e. S ) | 
						
							| 36 | 2 3 | ndmovrcl |  |-  ( ( u F v ) e. S -> ( u e. S /\ v e. S ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ v e. S ) ) | 
						
							| 38 |  | oveq1 |  |-  ( x = v -> ( x F B ) = ( v F B ) ) | 
						
							| 39 |  | id |  |-  ( x = v -> x = v ) | 
						
							| 40 | 38 39 | eqeq12d |  |-  ( x = v -> ( ( x F B ) = x <-> ( v F B ) = v ) ) | 
						
							| 41 | 40 6 | vtoclga |  |-  ( v e. S -> ( v F B ) = v ) | 
						
							| 42 | 37 41 | simpl2im |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( v F B ) = v ) | 
						
							| 43 | 26 34 42 | 3eqtr3d |  |-  ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) | 
						
							| 44 | 43 | ax-gen |  |-  A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) | 
						
							| 45 | 12 44 | mpgbir |  |-  E* w ( u F w ) = B | 
						
							| 46 | 9 45 | vtoclg |  |-  ( A e. S -> E* w ( A F w ) = B ) | 
						
							| 47 |  | moanimv |  |-  ( E* w ( A e. S /\ ( A F w ) = B ) <-> ( A e. S -> E* w ( A F w ) = B ) ) | 
						
							| 48 | 46 47 | mpbir |  |-  E* w ( A e. S /\ ( A F w ) = B ) | 
						
							| 49 |  | eleq1 |  |-  ( ( A F w ) = B -> ( ( A F w ) e. S <-> B e. S ) ) | 
						
							| 50 | 1 49 | mpbiri |  |-  ( ( A F w ) = B -> ( A F w ) e. S ) | 
						
							| 51 | 2 3 | ndmovrcl |  |-  ( ( A F w ) e. S -> ( A e. S /\ w e. S ) ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( A F w ) = B -> ( A e. S /\ w e. S ) ) | 
						
							| 53 | 52 | simpld |  |-  ( ( A F w ) = B -> A e. S ) | 
						
							| 54 | 53 | ancri |  |-  ( ( A F w ) = B -> ( A e. S /\ ( A F w ) = B ) ) | 
						
							| 55 | 54 | moimi |  |-  ( E* w ( A e. S /\ ( A F w ) = B ) -> E* w ( A F w ) = B ) | 
						
							| 56 | 48 55 | ax-mp |  |-  E* w ( A F w ) = B |