| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovmo.2 |
|- B e. S |
| 2 |
|
caovmo.dom |
|- dom F = ( S X. S ) |
| 3 |
|
caovmo.3 |
|- -. (/) e. S |
| 4 |
|
caovmo.com |
|- ( x F y ) = ( y F x ) |
| 5 |
|
caovmo.ass |
|- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
| 6 |
|
caovmo.id |
|- ( x e. S -> ( x F B ) = x ) |
| 7 |
|
oveq1 |
|- ( u = A -> ( u F w ) = ( A F w ) ) |
| 8 |
7
|
eqeq1d |
|- ( u = A -> ( ( u F w ) = B <-> ( A F w ) = B ) ) |
| 9 |
8
|
mobidv |
|- ( u = A -> ( E* w ( u F w ) = B <-> E* w ( A F w ) = B ) ) |
| 10 |
|
oveq2 |
|- ( w = v -> ( u F w ) = ( u F v ) ) |
| 11 |
10
|
eqeq1d |
|- ( w = v -> ( ( u F w ) = B <-> ( u F v ) = B ) ) |
| 12 |
11
|
mo4 |
|- ( E* w ( u F w ) = B <-> A. w A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) ) |
| 13 |
|
simpr |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) = B ) |
| 14 |
13
|
oveq2d |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( w F B ) ) |
| 15 |
|
simpl |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) = B ) |
| 16 |
15
|
oveq1d |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( ( u F w ) F v ) = ( B F v ) ) |
| 17 |
|
vex |
|- u e. _V |
| 18 |
|
vex |
|- w e. _V |
| 19 |
|
vex |
|- v e. _V |
| 20 |
17 18 19 5
|
caovass |
|- ( ( u F w ) F v ) = ( u F ( w F v ) ) |
| 21 |
17 18 19 4 5
|
caov12 |
|- ( u F ( w F v ) ) = ( w F ( u F v ) ) |
| 22 |
20 21
|
eqtri |
|- ( ( u F w ) F v ) = ( w F ( u F v ) ) |
| 23 |
1
|
elexi |
|- B e. _V |
| 24 |
23 19 4
|
caovcom |
|- ( B F v ) = ( v F B ) |
| 25 |
16 22 24
|
3eqtr3g |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F ( u F v ) ) = ( v F B ) ) |
| 26 |
14 25
|
eqtr3d |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = ( v F B ) ) |
| 27 |
15 1
|
eqeltrdi |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F w ) e. S ) |
| 28 |
2 3
|
ndmovrcl |
|- ( ( u F w ) e. S -> ( u e. S /\ w e. S ) ) |
| 29 |
27 28
|
syl |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ w e. S ) ) |
| 30 |
|
oveq1 |
|- ( x = w -> ( x F B ) = ( w F B ) ) |
| 31 |
|
id |
|- ( x = w -> x = w ) |
| 32 |
30 31
|
eqeq12d |
|- ( x = w -> ( ( x F B ) = x <-> ( w F B ) = w ) ) |
| 33 |
32 6
|
vtoclga |
|- ( w e. S -> ( w F B ) = w ) |
| 34 |
29 33
|
simpl2im |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( w F B ) = w ) |
| 35 |
13 1
|
eqeltrdi |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u F v ) e. S ) |
| 36 |
2 3
|
ndmovrcl |
|- ( ( u F v ) e. S -> ( u e. S /\ v e. S ) ) |
| 37 |
35 36
|
syl |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( u e. S /\ v e. S ) ) |
| 38 |
|
oveq1 |
|- ( x = v -> ( x F B ) = ( v F B ) ) |
| 39 |
|
id |
|- ( x = v -> x = v ) |
| 40 |
38 39
|
eqeq12d |
|- ( x = v -> ( ( x F B ) = x <-> ( v F B ) = v ) ) |
| 41 |
40 6
|
vtoclga |
|- ( v e. S -> ( v F B ) = v ) |
| 42 |
37 41
|
simpl2im |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> ( v F B ) = v ) |
| 43 |
26 34 42
|
3eqtr3d |
|- ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) |
| 44 |
43
|
ax-gen |
|- A. v ( ( ( u F w ) = B /\ ( u F v ) = B ) -> w = v ) |
| 45 |
12 44
|
mpgbir |
|- E* w ( u F w ) = B |
| 46 |
9 45
|
vtoclg |
|- ( A e. S -> E* w ( A F w ) = B ) |
| 47 |
|
moanimv |
|- ( E* w ( A e. S /\ ( A F w ) = B ) <-> ( A e. S -> E* w ( A F w ) = B ) ) |
| 48 |
46 47
|
mpbir |
|- E* w ( A e. S /\ ( A F w ) = B ) |
| 49 |
|
eleq1 |
|- ( ( A F w ) = B -> ( ( A F w ) e. S <-> B e. S ) ) |
| 50 |
1 49
|
mpbiri |
|- ( ( A F w ) = B -> ( A F w ) e. S ) |
| 51 |
2 3
|
ndmovrcl |
|- ( ( A F w ) e. S -> ( A e. S /\ w e. S ) ) |
| 52 |
50 51
|
syl |
|- ( ( A F w ) = B -> ( A e. S /\ w e. S ) ) |
| 53 |
52
|
simpld |
|- ( ( A F w ) = B -> A e. S ) |
| 54 |
53
|
ancri |
|- ( ( A F w ) = B -> ( A e. S /\ ( A F w ) = B ) ) |
| 55 |
54
|
moimi |
|- ( E* w ( A e. S /\ ( A F w ) = B ) -> E* w ( A F w ) = B ) |
| 56 |
48 55
|
ax-mp |
|- E* w ( A F w ) = B |