Metamath Proof Explorer


Theorem caovord2

Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996)

Ref Expression
Hypotheses caovord.1
|- A e. _V
caovord.2
|- B e. _V
caovord.3
|- ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) )
caovord2.3
|- C e. _V
caovord2.com
|- ( x F y ) = ( y F x )
Assertion caovord2
|- ( C e. S -> ( A R B <-> ( A F C ) R ( B F C ) ) )

Proof

Step Hyp Ref Expression
1 caovord.1
 |-  A e. _V
2 caovord.2
 |-  B e. _V
3 caovord.3
 |-  ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) )
4 caovord2.3
 |-  C e. _V
5 caovord2.com
 |-  ( x F y ) = ( y F x )
6 1 2 3 caovord
 |-  ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) )
7 4 1 5 caovcom
 |-  ( C F A ) = ( A F C )
8 4 2 5 caovcom
 |-  ( C F B ) = ( B F C )
9 7 8 breq12i
 |-  ( ( C F A ) R ( C F B ) <-> ( A F C ) R ( B F C ) )
10 6 9 bitrdi
 |-  ( C e. S -> ( A R B <-> ( A F C ) R ( B F C ) ) )