| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovordg.1 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
| 2 |
|
caovordd.2 |
|- ( ph -> A e. S ) |
| 3 |
|
caovordd.3 |
|- ( ph -> B e. S ) |
| 4 |
|
caovordd.4 |
|- ( ph -> C e. S ) |
| 5 |
|
caovord2d.com |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
| 6 |
1 2 3 4
|
caovordd |
|- ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| 7 |
5 4 2
|
caovcomd |
|- ( ph -> ( C F A ) = ( A F C ) ) |
| 8 |
5 4 3
|
caovcomd |
|- ( ph -> ( C F B ) = ( B F C ) ) |
| 9 |
7 8
|
breq12d |
|- ( ph -> ( ( C F A ) R ( C F B ) <-> ( A F C ) R ( B F C ) ) ) |
| 10 |
6 9
|
bitrd |
|- ( ph -> ( A R B <-> ( A F C ) R ( B F C ) ) ) |