Metamath Proof Explorer


Theorem caovord3

Description: Ordering law. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses caovord.1
|- A e. _V
caovord.2
|- B e. _V
caovord.3
|- ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) )
caovord2.3
|- C e. _V
caovord2.com
|- ( x F y ) = ( y F x )
caovord3.4
|- D e. _V
Assertion caovord3
|- ( ( ( B e. S /\ C e. S ) /\ ( A F B ) = ( C F D ) ) -> ( A R C <-> D R B ) )

Proof

Step Hyp Ref Expression
1 caovord.1
 |-  A e. _V
2 caovord.2
 |-  B e. _V
3 caovord.3
 |-  ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) )
4 caovord2.3
 |-  C e. _V
5 caovord2.com
 |-  ( x F y ) = ( y F x )
6 caovord3.4
 |-  D e. _V
7 1 4 3 2 5 caovord2
 |-  ( B e. S -> ( A R C <-> ( A F B ) R ( C F B ) ) )
8 7 adantr
 |-  ( ( B e. S /\ C e. S ) -> ( A R C <-> ( A F B ) R ( C F B ) ) )
9 breq1
 |-  ( ( A F B ) = ( C F D ) -> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) )
10 8 9 sylan9bb
 |-  ( ( ( B e. S /\ C e. S ) /\ ( A F B ) = ( C F D ) ) -> ( A R C <-> ( C F D ) R ( C F B ) ) )
11 6 2 3 caovord
 |-  ( C e. S -> ( D R B <-> ( C F D ) R ( C F B ) ) )
12 11 ad2antlr
 |-  ( ( ( B e. S /\ C e. S ) /\ ( A F B ) = ( C F D ) ) -> ( D R B <-> ( C F D ) R ( C F B ) ) )
13 10 12 bitr4d
 |-  ( ( ( B e. S /\ C e. S ) /\ ( A F B ) = ( C F D ) ) -> ( A R C <-> D R B ) )