Step |
Hyp |
Ref |
Expression |
1 |
|
caovordg.1 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
2 |
|
caovordd.2 |
|- ( ph -> A e. S ) |
3 |
|
caovordd.3 |
|- ( ph -> B e. S ) |
4 |
|
caovordd.4 |
|- ( ph -> C e. S ) |
5 |
|
caovord2d.com |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
6 |
|
caovord3d.5 |
|- ( ph -> D e. S ) |
7 |
|
breq1 |
|- ( ( A F B ) = ( C F D ) -> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) |
8 |
1 2 4 3 5
|
caovord2d |
|- ( ph -> ( A R C <-> ( A F B ) R ( C F B ) ) ) |
9 |
1 6 3 4
|
caovordd |
|- ( ph -> ( D R B <-> ( C F D ) R ( C F B ) ) ) |
10 |
8 9
|
bibi12d |
|- ( ph -> ( ( A R C <-> D R B ) <-> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) ) |
11 |
7 10
|
syl5ibr |
|- ( ph -> ( ( A F B ) = ( C F D ) -> ( A R C <-> D R B ) ) ) |