Metamath Proof Explorer


Theorem caovordd

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) )
caovordd.2
|- ( ph -> A e. S )
caovordd.3
|- ( ph -> B e. S )
caovordd.4
|- ( ph -> C e. S )
Assertion caovordd
|- ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) )

Proof

Step Hyp Ref Expression
1 caovordg.1
 |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) )
2 caovordd.2
 |-  ( ph -> A e. S )
3 caovordd.3
 |-  ( ph -> B e. S )
4 caovordd.4
 |-  ( ph -> C e. S )
5 id
 |-  ( ph -> ph )
6 1 caovordg
 |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B <-> ( C F A ) R ( C F B ) ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) )