Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordig.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) ) | |
| caovordid.2 | |- ( ph -> A e. S ) | ||
| caovordid.3 | |- ( ph -> B e. S ) | ||
| caovordid.4 | |- ( ph -> C e. S ) | ||
| Assertion | caovordid | |- ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovordig.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) ) | |
| 2 | caovordid.2 | |- ( ph -> A e. S ) | |
| 3 | caovordid.3 | |- ( ph -> B e. S ) | |
| 4 | caovordid.4 | |- ( ph -> C e. S ) | |
| 5 | id | |- ( ph -> ph ) | |
| 6 | 1 | caovordig | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B -> ( C F A ) R ( C F B ) ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) ) |