Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovordig.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) ) |
|
caovordid.2 | |- ( ph -> A e. S ) |
||
caovordid.3 | |- ( ph -> B e. S ) |
||
caovordid.4 | |- ( ph -> C e. S ) |
||
Assertion | caovordid | |- ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovordig.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) ) |
|
2 | caovordid.2 | |- ( ph -> A e. S ) |
|
3 | caovordid.3 | |- ( ph -> B e. S ) |
|
4 | caovordid.4 | |- ( ph -> C e. S ) |
|
5 | id | |- ( ph -> ph ) |
|
6 | 1 | caovordig | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B -> ( C F A ) R ( C F B ) ) ) |
7 | 5 2 3 4 6 | syl13anc | |- ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) ) |