Metamath Proof Explorer


Theorem caovordid

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)

Ref Expression
Hypotheses caovordig.1
|- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) )
caovordid.2
|- ( ph -> A e. S )
caovordid.3
|- ( ph -> B e. S )
caovordid.4
|- ( ph -> C e. S )
Assertion caovordid
|- ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) )

Proof

Step Hyp Ref Expression
1 caovordig.1
 |-  ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y -> ( z F x ) R ( z F y ) ) )
2 caovordid.2
 |-  ( ph -> A e. S )
3 caovordid.3
 |-  ( ph -> B e. S )
4 caovordid.4
 |-  ( ph -> C e. S )
5 id
 |-  ( ph -> ph )
6 1 caovordig
 |-  ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( A R B -> ( C F A ) R ( C F B ) ) )
7 5 2 3 4 6 syl13anc
 |-  ( ph -> ( A R B -> ( C F A ) R ( C F B ) ) )