Step |
Hyp |
Ref |
Expression |
1 |
|
card2inf.1 |
|- A e. _V |
2 |
|
breq1 |
|- ( x = (/) -> ( x ~< A <-> (/) ~< A ) ) |
3 |
|
breq1 |
|- ( x = n -> ( x ~< A <-> n ~< A ) ) |
4 |
|
breq1 |
|- ( x = suc n -> ( x ~< A <-> suc n ~< A ) ) |
5 |
|
0elon |
|- (/) e. On |
6 |
|
breq1 |
|- ( y = (/) -> ( y ~~ A <-> (/) ~~ A ) ) |
7 |
6
|
rspcev |
|- ( ( (/) e. On /\ (/) ~~ A ) -> E. y e. On y ~~ A ) |
8 |
5 7
|
mpan |
|- ( (/) ~~ A -> E. y e. On y ~~ A ) |
9 |
8
|
con3i |
|- ( -. E. y e. On y ~~ A -> -. (/) ~~ A ) |
10 |
1
|
0dom |
|- (/) ~<_ A |
11 |
|
brsdom |
|- ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) ) |
12 |
10 11
|
mpbiran |
|- ( (/) ~< A <-> -. (/) ~~ A ) |
13 |
9 12
|
sylibr |
|- ( -. E. y e. On y ~~ A -> (/) ~< A ) |
14 |
|
sucdom2 |
|- ( n ~< A -> suc n ~<_ A ) |
15 |
14
|
ad2antll |
|- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~<_ A ) |
16 |
|
nnon |
|- ( n e. _om -> n e. On ) |
17 |
|
suceloni |
|- ( n e. On -> suc n e. On ) |
18 |
|
breq1 |
|- ( y = suc n -> ( y ~~ A <-> suc n ~~ A ) ) |
19 |
18
|
rspcev |
|- ( ( suc n e. On /\ suc n ~~ A ) -> E. y e. On y ~~ A ) |
20 |
19
|
ex |
|- ( suc n e. On -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) |
21 |
16 17 20
|
3syl |
|- ( n e. _om -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) |
22 |
21
|
con3dimp |
|- ( ( n e. _om /\ -. E. y e. On y ~~ A ) -> -. suc n ~~ A ) |
23 |
22
|
adantrr |
|- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> -. suc n ~~ A ) |
24 |
|
brsdom |
|- ( suc n ~< A <-> ( suc n ~<_ A /\ -. suc n ~~ A ) ) |
25 |
15 23 24
|
sylanbrc |
|- ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~< A ) |
26 |
25
|
exp32 |
|- ( n e. _om -> ( -. E. y e. On y ~~ A -> ( n ~< A -> suc n ~< A ) ) ) |
27 |
2 3 4 13 26
|
finds2 |
|- ( x e. _om -> ( -. E. y e. On y ~~ A -> x ~< A ) ) |
28 |
27
|
com12 |
|- ( -. E. y e. On y ~~ A -> ( x e. _om -> x ~< A ) ) |
29 |
28
|
ralrimiv |
|- ( -. E. y e. On y ~~ A -> A. x e. _om x ~< A ) |
30 |
|
omsson |
|- _om C_ On |
31 |
|
ssrab |
|- ( _om C_ { x e. On | x ~< A } <-> ( _om C_ On /\ A. x e. _om x ~< A ) ) |
32 |
30 31
|
mpbiran |
|- ( _om C_ { x e. On | x ~< A } <-> A. x e. _om x ~< A ) |
33 |
29 32
|
sylibr |
|- ( -. E. y e. On y ~~ A -> _om C_ { x e. On | x ~< A } ) |