Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
|- ( card ` A ) e. On |
2 |
|
eleq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
3 |
1 2
|
mpbii |
|- ( ( card ` A ) = A -> A e. On ) |
4 |
|
alephle |
|- ( A e. On -> A C_ ( aleph ` A ) ) |
5 |
|
fveq2 |
|- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
6 |
5
|
sseq2d |
|- ( x = A -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` A ) ) ) |
7 |
6
|
rspcev |
|- ( ( A e. On /\ A C_ ( aleph ` A ) ) -> E. x e. On A C_ ( aleph ` x ) ) |
8 |
4 7
|
mpdan |
|- ( A e. On -> E. x e. On A C_ ( aleph ` x ) ) |
9 |
|
nfcv |
|- F/_ x A |
10 |
|
nfcv |
|- F/_ x aleph |
11 |
|
nfrab1 |
|- F/_ x { x e. On | A C_ ( aleph ` x ) } |
12 |
11
|
nfint |
|- F/_ x |^| { x e. On | A C_ ( aleph ` x ) } |
13 |
10 12
|
nffv |
|- F/_ x ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) |
14 |
9 13
|
nfss |
|- F/ x A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) |
15 |
|
fveq2 |
|- ( x = |^| { x e. On | A C_ ( aleph ` x ) } -> ( aleph ` x ) = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
16 |
15
|
sseq2d |
|- ( x = |^| { x e. On | A C_ ( aleph ` x ) } -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
17 |
14 16
|
onminsb |
|- ( E. x e. On A C_ ( aleph ` x ) -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
18 |
3 8 17
|
3syl |
|- ( ( card ` A ) = A -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
19 |
18
|
a1i |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( card ` A ) = A -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
20 |
|
fveq2 |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( aleph ` (/) ) ) |
21 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
22 |
20 21
|
eqtrdi |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = _om ) |
23 |
22
|
sseq1d |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A <-> _om C_ A ) ) |
24 |
23
|
biimprd |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( _om C_ A -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) |
25 |
19 24
|
anim12d |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( ( card ` A ) = A /\ _om C_ A ) -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) ) |
26 |
|
eqss |
|- ( A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) |
27 |
25 26
|
syl6ibr |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( ( card ` A ) = A /\ _om C_ A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
28 |
27
|
com12 |
|- ( ( ( card ` A ) = A /\ _om C_ A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
29 |
28
|
ancoms |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
30 |
|
fveq2 |
|- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
31 |
30
|
sseq2d |
|- ( x = y -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` y ) ) ) |
32 |
31
|
onnminsb |
|- ( y e. On -> ( y e. |^| { x e. On | A C_ ( aleph ` x ) } -> -. A C_ ( aleph ` y ) ) ) |
33 |
|
vex |
|- y e. _V |
34 |
33
|
sucid |
|- y e. suc y |
35 |
|
eleq2 |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> ( y e. |^| { x e. On | A C_ ( aleph ` x ) } <-> y e. suc y ) ) |
36 |
34 35
|
mpbiri |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> y e. |^| { x e. On | A C_ ( aleph ` x ) } ) |
37 |
32 36
|
impel |
|- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> -. A C_ ( aleph ` y ) ) |
38 |
37
|
adantl |
|- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> -. A C_ ( aleph ` y ) ) |
39 |
|
fveq2 |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( aleph ` suc y ) ) |
40 |
|
alephsuc |
|- ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) |
41 |
39 40
|
sylan9eqr |
|- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( har ` ( aleph ` y ) ) ) |
42 |
41
|
eleq2d |
|- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> A e. ( har ` ( aleph ` y ) ) ) ) |
43 |
42
|
biimpd |
|- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A e. ( har ` ( aleph ` y ) ) ) ) |
44 |
|
elharval |
|- ( A e. ( har ` ( aleph ` y ) ) <-> ( A e. On /\ A ~<_ ( aleph ` y ) ) ) |
45 |
44
|
simprbi |
|- ( A e. ( har ` ( aleph ` y ) ) -> A ~<_ ( aleph ` y ) ) |
46 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
47 |
3 46
|
syl |
|- ( ( card ` A ) = A -> A e. dom card ) |
48 |
|
alephon |
|- ( aleph ` y ) e. On |
49 |
|
onenon |
|- ( ( aleph ` y ) e. On -> ( aleph ` y ) e. dom card ) |
50 |
48 49
|
ax-mp |
|- ( aleph ` y ) e. dom card |
51 |
|
carddom2 |
|- ( ( A e. dom card /\ ( aleph ` y ) e. dom card ) -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
52 |
47 50 51
|
sylancl |
|- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
53 |
|
sseq1 |
|- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A C_ ( card ` ( aleph ` y ) ) ) ) |
54 |
|
alephcard |
|- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
55 |
54
|
sseq2i |
|- ( A C_ ( card ` ( aleph ` y ) ) <-> A C_ ( aleph ` y ) ) |
56 |
53 55
|
bitrdi |
|- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A C_ ( aleph ` y ) ) ) |
57 |
52 56
|
bitr3d |
|- ( ( card ` A ) = A -> ( A ~<_ ( aleph ` y ) <-> A C_ ( aleph ` y ) ) ) |
58 |
45 57
|
syl5ib |
|- ( ( card ` A ) = A -> ( A e. ( har ` ( aleph ` y ) ) -> A C_ ( aleph ` y ) ) ) |
59 |
43 58
|
sylan9r |
|- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A C_ ( aleph ` y ) ) ) |
60 |
38 59
|
mtod |
|- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
61 |
60
|
rexlimdvaa |
|- ( ( card ` A ) = A -> ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
62 |
|
onintrab2 |
|- ( E. x e. On A C_ ( aleph ` x ) <-> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
63 |
8 62
|
sylib |
|- ( A e. On -> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
64 |
|
onelon |
|- ( ( |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> y e. On ) |
65 |
63 64
|
sylan |
|- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> y e. On ) |
66 |
32
|
adantld |
|- ( y e. On -> ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A C_ ( aleph ` y ) ) ) |
67 |
65 66
|
mpcom |
|- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A C_ ( aleph ` y ) ) |
68 |
48
|
onelssi |
|- ( A e. ( aleph ` y ) -> A C_ ( aleph ` y ) ) |
69 |
67 68
|
nsyl |
|- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` y ) ) |
70 |
69
|
nrexdv |
|- ( A e. On -> -. E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
71 |
70
|
adantr |
|- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
72 |
|
alephlim |
|- ( ( |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) |
73 |
63 72
|
sylan |
|- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) |
74 |
73
|
eleq2d |
|- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> A e. U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) ) |
75 |
|
eliun |
|- ( A e. U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) <-> E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
76 |
74 75
|
bitrdi |
|- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) ) |
77 |
71 76
|
mtbird |
|- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
78 |
77
|
ex |
|- ( A e. On -> ( Lim |^| { x e. On | A C_ ( aleph ` x ) } -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
79 |
3 78
|
syl |
|- ( ( card ` A ) = A -> ( Lim |^| { x e. On | A C_ ( aleph ` x ) } -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
80 |
61 79
|
jaod |
|- ( ( card ` A ) = A -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
81 |
8 17
|
syl |
|- ( A e. On -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
82 |
|
alephon |
|- ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) e. On |
83 |
|
onsseleq |
|- ( ( A e. On /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) e. On ) -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
84 |
82 83
|
mpan2 |
|- ( A e. On -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
85 |
81 84
|
mpbid |
|- ( A e. On -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
86 |
85
|
ord |
|- ( A e. On -> ( -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
87 |
3 80 86
|
sylsyld |
|- ( ( card ` A ) = A -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
88 |
87
|
adantl |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
89 |
|
eloni |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> Ord |^| { x e. On | A C_ ( aleph ` x ) } ) |
90 |
|
ordzsl |
|- ( Ord |^| { x e. On | A C_ ( aleph ` x ) } <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
91 |
|
3orass |
|- ( ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
92 |
90 91
|
bitri |
|- ( Ord |^| { x e. On | A C_ ( aleph ` x ) } <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
93 |
89 92
|
sylib |
|- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
94 |
3 63 93
|
3syl |
|- ( ( card ` A ) = A -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
95 |
94
|
adantl |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
96 |
29 88 95
|
mpjaod |
|- ( ( _om C_ A /\ ( card ` A ) = A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |