Step |
Hyp |
Ref |
Expression |
1 |
|
carddomi2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |
2 |
|
brdom2 |
|- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
3 |
|
cardon |
|- ( card ` A ) e. On |
4 |
3
|
onelssi |
|- ( ( card ` B ) e. ( card ` A ) -> ( card ` B ) C_ ( card ` A ) ) |
5 |
|
carddomi2 |
|- ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
6 |
5
|
ancoms |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
7 |
|
domnsym |
|- ( B ~<_ A -> -. A ~< B ) |
8 |
4 6 7
|
syl56 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) e. ( card ` A ) -> -. A ~< B ) ) |
9 |
8
|
con2d |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> -. ( card ` B ) e. ( card ` A ) ) ) |
10 |
|
cardon |
|- ( card ` B ) e. On |
11 |
|
ontri1 |
|- ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) ) |
12 |
3 10 11
|
mp2an |
|- ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) |
13 |
9 12
|
syl6ibr |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> ( card ` A ) C_ ( card ` B ) ) ) |
14 |
|
carden2b |
|- ( A ~~ B -> ( card ` A ) = ( card ` B ) ) |
15 |
|
eqimss |
|- ( ( card ` A ) = ( card ` B ) -> ( card ` A ) C_ ( card ` B ) ) |
16 |
14 15
|
syl |
|- ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) |
17 |
16
|
a1i |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) ) |
18 |
13 17
|
jaod |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( A ~< B \/ A ~~ B ) -> ( card ` A ) C_ ( card ` B ) ) ) |
19 |
2 18
|
syl5bi |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B -> ( card ` A ) C_ ( card ` B ) ) ) |
20 |
1 19
|
impbid |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |