| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carddomi2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |
| 2 |
|
brdom2 |
|- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
| 3 |
|
cardon |
|- ( card ` A ) e. On |
| 4 |
3
|
onelssi |
|- ( ( card ` B ) e. ( card ` A ) -> ( card ` B ) C_ ( card ` A ) ) |
| 5 |
|
carddomi2 |
|- ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
| 6 |
5
|
ancoms |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) -> B ~<_ A ) ) |
| 7 |
|
domnsym |
|- ( B ~<_ A -> -. A ~< B ) |
| 8 |
4 6 7
|
syl56 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) e. ( card ` A ) -> -. A ~< B ) ) |
| 9 |
8
|
con2d |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> -. ( card ` B ) e. ( card ` A ) ) ) |
| 10 |
|
cardon |
|- ( card ` B ) e. On |
| 11 |
|
ontri1 |
|- ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) ) |
| 12 |
3 10 11
|
mp2an |
|- ( ( card ` A ) C_ ( card ` B ) <-> -. ( card ` B ) e. ( card ` A ) ) |
| 13 |
9 12
|
imbitrrdi |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~< B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 14 |
|
carden2b |
|- ( A ~~ B -> ( card ` A ) = ( card ` B ) ) |
| 15 |
|
eqimss |
|- ( ( card ` A ) = ( card ` B ) -> ( card ` A ) C_ ( card ` B ) ) |
| 16 |
14 15
|
syl |
|- ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) |
| 17 |
16
|
a1i |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~~ B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 18 |
13 17
|
jaod |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( A ~< B \/ A ~~ B ) -> ( card ` A ) C_ ( card ` B ) ) ) |
| 19 |
2 18
|
biimtrid |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A ~<_ B -> ( card ` A ) C_ ( card ` B ) ) ) |
| 20 |
1 19
|
impbid |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |