Step |
Hyp |
Ref |
Expression |
1 |
|
cardnueq0 |
|- ( A e. dom card -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
2 |
1
|
adantr |
|- ( ( A e. dom card /\ B e. V ) -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
3 |
2
|
biimpa |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( card ` A ) = (/) ) -> A = (/) ) |
4 |
|
0domg |
|- ( B e. V -> (/) ~<_ B ) |
5 |
4
|
ad2antlr |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( card ` A ) = (/) ) -> (/) ~<_ B ) |
6 |
3 5
|
eqbrtrd |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( card ` A ) = (/) ) -> A ~<_ B ) |
7 |
6
|
a1d |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( card ` A ) = (/) ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |
8 |
|
fvex |
|- ( card ` B ) e. _V |
9 |
|
simprr |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` A ) C_ ( card ` B ) ) |
10 |
|
ssdomg |
|- ( ( card ` B ) e. _V -> ( ( card ` A ) C_ ( card ` B ) -> ( card ` A ) ~<_ ( card ` B ) ) ) |
11 |
8 9 10
|
mpsyl |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` A ) ~<_ ( card ` B ) ) |
12 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
13 |
12
|
ad2antrr |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` A ) ~~ A ) |
14 |
|
simprl |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` A ) =/= (/) ) |
15 |
|
ssn0 |
|- ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= (/) ) -> ( card ` B ) =/= (/) ) |
16 |
9 14 15
|
syl2anc |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` B ) =/= (/) ) |
17 |
|
ndmfv |
|- ( -. B e. dom card -> ( card ` B ) = (/) ) |
18 |
17
|
necon1ai |
|- ( ( card ` B ) =/= (/) -> B e. dom card ) |
19 |
|
cardid2 |
|- ( B e. dom card -> ( card ` B ) ~~ B ) |
20 |
16 18 19
|
3syl |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( card ` B ) ~~ B ) |
21 |
|
domen1 |
|- ( ( card ` A ) ~~ A -> ( ( card ` A ) ~<_ ( card ` B ) <-> A ~<_ ( card ` B ) ) ) |
22 |
|
domen2 |
|- ( ( card ` B ) ~~ B -> ( A ~<_ ( card ` B ) <-> A ~<_ B ) ) |
23 |
21 22
|
sylan9bb |
|- ( ( ( card ` A ) ~~ A /\ ( card ` B ) ~~ B ) -> ( ( card ` A ) ~<_ ( card ` B ) <-> A ~<_ B ) ) |
24 |
13 20 23
|
syl2anc |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> ( ( card ` A ) ~<_ ( card ` B ) <-> A ~<_ B ) ) |
25 |
11 24
|
mpbid |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( ( card ` A ) =/= (/) /\ ( card ` A ) C_ ( card ` B ) ) ) -> A ~<_ B ) |
26 |
25
|
expr |
|- ( ( ( A e. dom card /\ B e. V ) /\ ( card ` A ) =/= (/) ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |
27 |
7 26
|
pm2.61dane |
|- ( ( A e. dom card /\ B e. V ) -> ( ( card ` A ) C_ ( card ` B ) -> A ~<_ B ) ) |