Step |
Hyp |
Ref |
Expression |
1 |
|
carddom2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
2 |
|
carddom2 |
|- ( ( B e. dom card /\ A e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) <-> B ~<_ A ) ) |
3 |
2
|
ancoms |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` B ) C_ ( card ` A ) <-> B ~<_ A ) ) |
4 |
1 3
|
anbi12d |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) <-> ( A ~<_ B /\ B ~<_ A ) ) ) |
5 |
|
eqss |
|- ( ( card ` A ) = ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) ) |
6 |
5
|
bicomi |
|- ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` B ) C_ ( card ` A ) ) <-> ( card ` A ) = ( card ` B ) ) |
7 |
|
sbthb |
|- ( ( A ~<_ B /\ B ~<_ A ) <-> A ~~ B ) |
8 |
4 6 7
|
3bitr3g |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |