Step |
Hyp |
Ref |
Expression |
1 |
|
df-card |
|- card = ( x e. _V |-> |^| { y e. On | y ~~ x } ) |
2 |
1
|
funmpt2 |
|- Fun card |
3 |
|
rabab |
|- { x e. _V | |^| { y e. On | y ~~ x } e. _V } = { x | |^| { y e. On | y ~~ x } e. _V } |
4 |
1
|
dmmpt |
|- dom card = { x e. _V | |^| { y e. On | y ~~ x } e. _V } |
5 |
|
intexrab |
|- ( E. y e. On y ~~ x <-> |^| { y e. On | y ~~ x } e. _V ) |
6 |
5
|
abbii |
|- { x | E. y e. On y ~~ x } = { x | |^| { y e. On | y ~~ x } e. _V } |
7 |
3 4 6
|
3eqtr4i |
|- dom card = { x | E. y e. On y ~~ x } |
8 |
|
df-fn |
|- ( card Fn { x | E. y e. On y ~~ x } <-> ( Fun card /\ dom card = { x | E. y e. On y ~~ x } ) ) |
9 |
2 7 8
|
mpbir2an |
|- card Fn { x | E. y e. On y ~~ x } |
10 |
|
simpr |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w = |^| { y e. On | y ~~ z } ) |
11 |
|
vex |
|- w e. _V |
12 |
10 11
|
eqeltrrdi |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. _V ) |
13 |
|
intex |
|- ( { y e. On | y ~~ z } =/= (/) <-> |^| { y e. On | y ~~ z } e. _V ) |
14 |
12 13
|
sylibr |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> { y e. On | y ~~ z } =/= (/) ) |
15 |
|
rabn0 |
|- ( { y e. On | y ~~ z } =/= (/) <-> E. y e. On y ~~ z ) |
16 |
14 15
|
sylib |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> E. y e. On y ~~ z ) |
17 |
|
vex |
|- z e. _V |
18 |
|
breq2 |
|- ( x = z -> ( y ~~ x <-> y ~~ z ) ) |
19 |
18
|
rexbidv |
|- ( x = z -> ( E. y e. On y ~~ x <-> E. y e. On y ~~ z ) ) |
20 |
17 19
|
elab |
|- ( z e. { x | E. y e. On y ~~ x } <-> E. y e. On y ~~ z ) |
21 |
16 20
|
sylibr |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> z e. { x | E. y e. On y ~~ x } ) |
22 |
|
ssrab2 |
|- { y e. On | y ~~ z } C_ On |
23 |
|
oninton |
|- ( ( { y e. On | y ~~ z } C_ On /\ { y e. On | y ~~ z } =/= (/) ) -> |^| { y e. On | y ~~ z } e. On ) |
24 |
22 14 23
|
sylancr |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> |^| { y e. On | y ~~ z } e. On ) |
25 |
10 24
|
eqeltrd |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> w e. On ) |
26 |
21 25
|
jca |
|- ( ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) -> ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) ) |
27 |
26
|
ssopab2i |
|- { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } C_ { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } |
28 |
|
df-card |
|- card = ( z e. _V |-> |^| { y e. On | y ~~ z } ) |
29 |
|
df-mpt |
|- ( z e. _V |-> |^| { y e. On | y ~~ z } ) = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } |
30 |
28 29
|
eqtri |
|- card = { <. z , w >. | ( z e. _V /\ w = |^| { y e. On | y ~~ z } ) } |
31 |
|
df-xp |
|- ( { x | E. y e. On y ~~ x } X. On ) = { <. z , w >. | ( z e. { x | E. y e. On y ~~ x } /\ w e. On ) } |
32 |
27 30 31
|
3sstr4i |
|- card C_ ( { x | E. y e. On y ~~ x } X. On ) |
33 |
|
dff2 |
|- ( card : { x | E. y e. On y ~~ x } --> On <-> ( card Fn { x | E. y e. On y ~~ x } /\ card C_ ( { x | E. y e. On y ~~ x } X. On ) ) ) |
34 |
9 32 33
|
mpbir2an |
|- card : { x | E. y e. On y ~~ x } --> On |