| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzennn.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| 2 |
1
|
fzennn |
|- ( N e. NN0 -> ( 1 ... N ) ~~ ( `' G ` N ) ) |
| 3 |
|
carden2b |
|- ( ( 1 ... N ) ~~ ( `' G ` N ) -> ( card ` ( 1 ... N ) ) = ( card ` ( `' G ` N ) ) ) |
| 4 |
2 3
|
syl |
|- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( card ` ( `' G ` N ) ) ) |
| 5 |
|
0z |
|- 0 e. ZZ |
| 6 |
5 1
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` 0 ) |
| 7 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
| 8 |
7
|
biimpi |
|- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 9 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` 0 ) ) -> ( `' G ` N ) e. _om ) |
| 10 |
6 8 9
|
sylancr |
|- ( N e. NN0 -> ( `' G ` N ) e. _om ) |
| 11 |
|
cardnn |
|- ( ( `' G ` N ) e. _om -> ( card ` ( `' G ` N ) ) = ( `' G ` N ) ) |
| 12 |
10 11
|
syl |
|- ( N e. NN0 -> ( card ` ( `' G ` N ) ) = ( `' G ` N ) ) |
| 13 |
4 12
|
eqtrd |
|- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( `' G ` N ) ) |