Step |
Hyp |
Ref |
Expression |
1 |
|
cardval3 |
|- ( A e. dom card -> ( card ` A ) = |^| { y e. On | y ~~ A } ) |
2 |
|
ssrab2 |
|- { y e. On | y ~~ A } C_ On |
3 |
|
fvex |
|- ( card ` A ) e. _V |
4 |
1 3
|
eqeltrrdi |
|- ( A e. dom card -> |^| { y e. On | y ~~ A } e. _V ) |
5 |
|
intex |
|- ( { y e. On | y ~~ A } =/= (/) <-> |^| { y e. On | y ~~ A } e. _V ) |
6 |
4 5
|
sylibr |
|- ( A e. dom card -> { y e. On | y ~~ A } =/= (/) ) |
7 |
|
onint |
|- ( ( { y e. On | y ~~ A } C_ On /\ { y e. On | y ~~ A } =/= (/) ) -> |^| { y e. On | y ~~ A } e. { y e. On | y ~~ A } ) |
8 |
2 6 7
|
sylancr |
|- ( A e. dom card -> |^| { y e. On | y ~~ A } e. { y e. On | y ~~ A } ) |
9 |
1 8
|
eqeltrd |
|- ( A e. dom card -> ( card ` A ) e. { y e. On | y ~~ A } ) |
10 |
|
breq1 |
|- ( y = ( card ` A ) -> ( y ~~ A <-> ( card ` A ) ~~ A ) ) |
11 |
10
|
elrab |
|- ( ( card ` A ) e. { y e. On | y ~~ A } <-> ( ( card ` A ) e. On /\ ( card ` A ) ~~ A ) ) |
12 |
11
|
simprbi |
|- ( ( card ` A ) e. { y e. On | y ~~ A } -> ( card ` A ) ~~ A ) |
13 |
9 12
|
syl |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |