| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. B -> A e. _V ) |
| 2 |
|
isinfcard |
|- ( ( _om C_ ( F ` x ) /\ ( card ` ( F ` x ) ) = ( F ` x ) ) <-> ( F ` x ) e. ran aleph ) |
| 3 |
2
|
bicomi |
|- ( ( F ` x ) e. ran aleph <-> ( _om C_ ( F ` x ) /\ ( card ` ( F ` x ) ) = ( F ` x ) ) ) |
| 4 |
3
|
simplbi |
|- ( ( F ` x ) e. ran aleph -> _om C_ ( F ` x ) ) |
| 5 |
|
ffn |
|- ( F : A --> ( _om u. ran aleph ) -> F Fn A ) |
| 6 |
|
fnfvelrn |
|- ( ( F Fn A /\ x e. A ) -> ( F ` x ) e. ran F ) |
| 7 |
6
|
ex |
|- ( F Fn A -> ( x e. A -> ( F ` x ) e. ran F ) ) |
| 8 |
|
fnima |
|- ( F Fn A -> ( F " A ) = ran F ) |
| 9 |
8
|
eleq2d |
|- ( F Fn A -> ( ( F ` x ) e. ( F " A ) <-> ( F ` x ) e. ran F ) ) |
| 10 |
7 9
|
sylibrd |
|- ( F Fn A -> ( x e. A -> ( F ` x ) e. ( F " A ) ) ) |
| 11 |
|
elssuni |
|- ( ( F ` x ) e. ( F " A ) -> ( F ` x ) C_ U. ( F " A ) ) |
| 12 |
10 11
|
syl6 |
|- ( F Fn A -> ( x e. A -> ( F ` x ) C_ U. ( F " A ) ) ) |
| 13 |
12
|
imp |
|- ( ( F Fn A /\ x e. A ) -> ( F ` x ) C_ U. ( F " A ) ) |
| 14 |
5 13
|
sylan |
|- ( ( F : A --> ( _om u. ran aleph ) /\ x e. A ) -> ( F ` x ) C_ U. ( F " A ) ) |
| 15 |
4 14
|
sylan9ssr |
|- ( ( ( F : A --> ( _om u. ran aleph ) /\ x e. A ) /\ ( F ` x ) e. ran aleph ) -> _om C_ U. ( F " A ) ) |
| 16 |
15
|
anasss |
|- ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> _om C_ U. ( F " A ) ) |
| 17 |
16
|
a1i |
|- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> _om C_ U. ( F " A ) ) ) |
| 18 |
|
carduniima |
|- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> U. ( F " A ) e. ( _om u. ran aleph ) ) ) |
| 19 |
|
iscard3 |
|- ( ( card ` U. ( F " A ) ) = U. ( F " A ) <-> U. ( F " A ) e. ( _om u. ran aleph ) ) |
| 20 |
18 19
|
imbitrrdi |
|- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 21 |
20
|
adantrd |
|- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) |
| 22 |
17 21
|
jcad |
|- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> ( _om C_ U. ( F " A ) /\ ( card ` U. ( F " A ) ) = U. ( F " A ) ) ) ) |
| 23 |
|
isinfcard |
|- ( ( _om C_ U. ( F " A ) /\ ( card ` U. ( F " A ) ) = U. ( F " A ) ) <-> U. ( F " A ) e. ran aleph ) |
| 24 |
22 23
|
imbitrdi |
|- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ ( x e. A /\ ( F ` x ) e. ran aleph ) ) -> U. ( F " A ) e. ran aleph ) ) |
| 25 |
24
|
exp4d |
|- ( A e. _V -> ( F : A --> ( _om u. ran aleph ) -> ( x e. A -> ( ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) ) ) |
| 26 |
25
|
imp |
|- ( ( A e. _V /\ F : A --> ( _om u. ran aleph ) ) -> ( x e. A -> ( ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) ) |
| 27 |
26
|
rexlimdv |
|- ( ( A e. _V /\ F : A --> ( _om u. ran aleph ) ) -> ( E. x e. A ( F ` x ) e. ran aleph -> U. ( F " A ) e. ran aleph ) ) |
| 28 |
27
|
expimpd |
|- ( A e. _V -> ( ( F : A --> ( _om u. ran aleph ) /\ E. x e. A ( F ` x ) e. ran aleph ) -> U. ( F " A ) e. ran aleph ) ) |
| 29 |
1 28
|
syl |
|- ( A e. B -> ( ( F : A --> ( _om u. ran aleph ) /\ E. x e. A ( F ` x ) e. ran aleph ) -> U. ( F " A ) e. ran aleph ) ) |