Step |
Hyp |
Ref |
Expression |
1 |
|
sseq2 |
|- ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) <-> _om C_ suc x ) ) |
2 |
1
|
biimpd |
|- ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> _om C_ suc x ) ) |
3 |
|
limom |
|- Lim _om |
4 |
|
limsssuc |
|- ( Lim _om -> ( _om C_ x <-> _om C_ suc x ) ) |
5 |
3 4
|
ax-mp |
|- ( _om C_ x <-> _om C_ suc x ) |
6 |
|
infensuc |
|- ( ( x e. On /\ _om C_ x ) -> x ~~ suc x ) |
7 |
6
|
ex |
|- ( x e. On -> ( _om C_ x -> x ~~ suc x ) ) |
8 |
5 7
|
syl5bir |
|- ( x e. On -> ( _om C_ suc x -> x ~~ suc x ) ) |
9 |
2 8
|
sylan9r |
|- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ suc x ) ) |
10 |
|
breq2 |
|- ( ( card ` A ) = suc x -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) ) |
11 |
10
|
adantl |
|- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( x ~~ ( card ` A ) <-> x ~~ suc x ) ) |
12 |
9 11
|
sylibrd |
|- ( ( x e. On /\ ( card ` A ) = suc x ) -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) ) |
13 |
12
|
ex |
|- ( x e. On -> ( ( card ` A ) = suc x -> ( _om C_ ( card ` A ) -> x ~~ ( card ` A ) ) ) ) |
14 |
13
|
com3r |
|- ( _om C_ ( card ` A ) -> ( x e. On -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) ) ) |
15 |
14
|
imp |
|- ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> x ~~ ( card ` A ) ) ) |
16 |
|
vex |
|- x e. _V |
17 |
16
|
sucid |
|- x e. suc x |
18 |
|
eleq2 |
|- ( ( card ` A ) = suc x -> ( x e. ( card ` A ) <-> x e. suc x ) ) |
19 |
17 18
|
mpbiri |
|- ( ( card ` A ) = suc x -> x e. ( card ` A ) ) |
20 |
|
cardidm |
|- ( card ` ( card ` A ) ) = ( card ` A ) |
21 |
19 20
|
eleqtrrdi |
|- ( ( card ` A ) = suc x -> x e. ( card ` ( card ` A ) ) ) |
22 |
|
cardne |
|- ( x e. ( card ` ( card ` A ) ) -> -. x ~~ ( card ` A ) ) |
23 |
21 22
|
syl |
|- ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) ) |
24 |
23
|
a1i |
|- ( ( _om C_ ( card ` A ) /\ x e. On ) -> ( ( card ` A ) = suc x -> -. x ~~ ( card ` A ) ) ) |
25 |
15 24
|
pm2.65d |
|- ( ( _om C_ ( card ` A ) /\ x e. On ) -> -. ( card ` A ) = suc x ) |
26 |
25
|
nrexdv |
|- ( _om C_ ( card ` A ) -> -. E. x e. On ( card ` A ) = suc x ) |
27 |
|
peano1 |
|- (/) e. _om |
28 |
|
ssel |
|- ( _om C_ ( card ` A ) -> ( (/) e. _om -> (/) e. ( card ` A ) ) ) |
29 |
27 28
|
mpi |
|- ( _om C_ ( card ` A ) -> (/) e. ( card ` A ) ) |
30 |
|
n0i |
|- ( (/) e. ( card ` A ) -> -. ( card ` A ) = (/) ) |
31 |
|
cardon |
|- ( card ` A ) e. On |
32 |
31
|
onordi |
|- Ord ( card ` A ) |
33 |
|
ordzsl |
|- ( Ord ( card ` A ) <-> ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
34 |
32 33
|
mpbi |
|- ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) |
35 |
|
3orass |
|- ( ( ( card ` A ) = (/) \/ E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) <-> ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) ) |
36 |
34 35
|
mpbi |
|- ( ( card ` A ) = (/) \/ ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
37 |
36
|
ori |
|- ( -. ( card ` A ) = (/) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
38 |
29 30 37
|
3syl |
|- ( _om C_ ( card ` A ) -> ( E. x e. On ( card ` A ) = suc x \/ Lim ( card ` A ) ) ) |
39 |
38
|
ord |
|- ( _om C_ ( card ` A ) -> ( -. E. x e. On ( card ` A ) = suc x -> Lim ( card ` A ) ) ) |
40 |
26 39
|
mpd |
|- ( _om C_ ( card ` A ) -> Lim ( card ` A ) ) |
41 |
|
limomss |
|- ( Lim ( card ` A ) -> _om C_ ( card ` A ) ) |
42 |
40 41
|
impbii |
|- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |