Metamath Proof Explorer


Theorem cardnn

Description: The cardinality of a natural number is the number. Corollary 10.23 of TakeutiZaring p. 90. (Contributed by Mario Carneiro, 7-Jan-2013)

Ref Expression
Assertion cardnn
|- ( A e. _om -> ( card ` A ) = A )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( A e. _om -> A e. On )
2 onenon
 |-  ( A e. On -> A e. dom card )
3 cardid2
 |-  ( A e. dom card -> ( card ` A ) ~~ A )
4 1 2 3 3syl
 |-  ( A e. _om -> ( card ` A ) ~~ A )
5 nnfi
 |-  ( A e. _om -> A e. Fin )
6 ficardom
 |-  ( A e. Fin -> ( card ` A ) e. _om )
7 5 6 syl
 |-  ( A e. _om -> ( card ` A ) e. _om )
8 nneneq
 |-  ( ( ( card ` A ) e. _om /\ A e. _om ) -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) )
9 7 8 mpancom
 |-  ( A e. _om -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) )
10 4 9 mpbid
 |-  ( A e. _om -> ( card ` A ) = A )