Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
2 |
|
onenon |
|- ( A e. On -> A e. dom card ) |
3 |
|
cardid2 |
|- ( A e. dom card -> ( card ` A ) ~~ A ) |
4 |
1 2 3
|
3syl |
|- ( A e. _om -> ( card ` A ) ~~ A ) |
5 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
6 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
7 |
5 6
|
syl |
|- ( A e. _om -> ( card ` A ) e. _om ) |
8 |
|
nneneq |
|- ( ( ( card ` A ) e. _om /\ A e. _om ) -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) ) |
9 |
7 8
|
mpancom |
|- ( A e. _om -> ( ( card ` A ) ~~ A <-> ( card ` A ) = A ) ) |
10 |
4 9
|
mpbid |
|- ( A e. _om -> ( card ` A ) = A ) |