Description: Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in _om plus the transfinite alephs. (Contributed by NM, 10-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardnum | |- { x | ( card ` x ) = x } = ( _om u. ran aleph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscard3 | |- ( ( card ` x ) = x <-> x e. ( _om u. ran aleph ) ) |
|
| 2 | 1 | bicomi | |- ( x e. ( _om u. ran aleph ) <-> ( card ` x ) = x ) |
| 3 | 2 | eqabi | |- ( _om u. ran aleph ) = { x | ( card ` x ) = x } |
| 4 | 3 | eqcomi | |- { x | ( card ` x ) = x } = ( _om u. ran aleph ) |