Metamath Proof Explorer


Theorem cardon

Description: The cardinal number of a set is an ordinal number. Proposition 10.6(1) of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Assertion cardon
|- ( card ` A ) e. On

Proof

Step Hyp Ref Expression
1 cardf2
 |-  card : { x | E. y e. On y ~~ x } --> On
2 0elon
 |-  (/) e. On
3 1 2 f0cli
 |-  ( card ` A ) e. On