Step |
Hyp |
Ref |
Expression |
1 |
|
carddom2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
2 |
|
carden2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
3 |
2
|
necon3abid |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) =/= ( card ` B ) <-> -. A ~~ B ) ) |
4 |
1 3
|
anbi12d |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) <-> ( A ~<_ B /\ -. A ~~ B ) ) ) |
5 |
|
cardon |
|- ( card ` A ) e. On |
6 |
|
cardon |
|- ( card ` B ) e. On |
7 |
|
onelpss |
|- ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) ) ) |
8 |
5 6 7
|
mp2an |
|- ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) ) |
9 |
|
brsdom |
|- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
10 |
4 8 9
|
3bitr4g |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |