| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carddom2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) C_ ( card ` B ) <-> A ~<_ B ) ) |
| 2 |
|
carden2 |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) = ( card ` B ) <-> A ~~ B ) ) |
| 3 |
2
|
necon3abid |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) =/= ( card ` B ) <-> -. A ~~ B ) ) |
| 4 |
1 3
|
anbi12d |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) <-> ( A ~<_ B /\ -. A ~~ B ) ) ) |
| 5 |
|
cardon |
|- ( card ` A ) e. On |
| 6 |
|
cardon |
|- ( card ` B ) e. On |
| 7 |
|
onelpss |
|- ( ( ( card ` A ) e. On /\ ( card ` B ) e. On ) -> ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( ( card ` A ) e. ( card ` B ) <-> ( ( card ` A ) C_ ( card ` B ) /\ ( card ` A ) =/= ( card ` B ) ) ) |
| 9 |
|
brsdom |
|- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
| 10 |
4 8 9
|
3bitr4g |
|- ( ( A e. dom card /\ B e. dom card ) -> ( ( card ` A ) e. ( card ` B ) <-> A ~< B ) ) |