Step |
Hyp |
Ref |
Expression |
1 |
|
cardid2 |
|- ( B e. dom card -> ( card ` B ) ~~ B ) |
2 |
1
|
ensymd |
|- ( B e. dom card -> B ~~ ( card ` B ) ) |
3 |
|
sdomentr |
|- ( ( A ~< B /\ B ~~ ( card ` B ) ) -> A ~< ( card ` B ) ) |
4 |
2 3
|
sylan2 |
|- ( ( A ~< B /\ B e. dom card ) -> A ~< ( card ` B ) ) |
5 |
|
ssdomg |
|- ( A e. On -> ( ( card ` B ) C_ A -> ( card ` B ) ~<_ A ) ) |
6 |
|
cardon |
|- ( card ` B ) e. On |
7 |
|
domtriord |
|- ( ( ( card ` B ) e. On /\ A e. On ) -> ( ( card ` B ) ~<_ A <-> -. A ~< ( card ` B ) ) ) |
8 |
6 7
|
mpan |
|- ( A e. On -> ( ( card ` B ) ~<_ A <-> -. A ~< ( card ` B ) ) ) |
9 |
5 8
|
sylibd |
|- ( A e. On -> ( ( card ` B ) C_ A -> -. A ~< ( card ` B ) ) ) |
10 |
9
|
con2d |
|- ( A e. On -> ( A ~< ( card ` B ) -> -. ( card ` B ) C_ A ) ) |
11 |
|
ontri1 |
|- ( ( ( card ` B ) e. On /\ A e. On ) -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
12 |
6 11
|
mpan |
|- ( A e. On -> ( ( card ` B ) C_ A <-> -. A e. ( card ` B ) ) ) |
13 |
12
|
con2bid |
|- ( A e. On -> ( A e. ( card ` B ) <-> -. ( card ` B ) C_ A ) ) |
14 |
10 13
|
sylibrd |
|- ( A e. On -> ( A ~< ( card ` B ) -> A e. ( card ` B ) ) ) |
15 |
4 14
|
syl5 |
|- ( A e. On -> ( ( A ~< B /\ B e. dom card ) -> A e. ( card ` B ) ) ) |
16 |
15
|
expcomd |
|- ( A e. On -> ( B e. dom card -> ( A ~< B -> A e. ( card ` B ) ) ) ) |
17 |
16
|
imp |
|- ( ( A e. On /\ B e. dom card ) -> ( A ~< B -> A e. ( card ` B ) ) ) |
18 |
|
cardsdomelir |
|- ( A e. ( card ` B ) -> A ~< B ) |
19 |
17 18
|
impbid1 |
|- ( ( A e. On /\ B e. dom card ) -> ( A ~< B <-> A e. ( card ` B ) ) ) |