| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardon |
|- ( card ` B ) e. On |
| 2 |
1
|
onelssi |
|- ( A e. ( card ` B ) -> A C_ ( card ` B ) ) |
| 3 |
|
ssdomg |
|- ( ( card ` B ) e. On -> ( A C_ ( card ` B ) -> A ~<_ ( card ` B ) ) ) |
| 4 |
1 2 3
|
mpsyl |
|- ( A e. ( card ` B ) -> A ~<_ ( card ` B ) ) |
| 5 |
|
elfvdm |
|- ( A e. ( card ` B ) -> B e. dom card ) |
| 6 |
|
cardid2 |
|- ( B e. dom card -> ( card ` B ) ~~ B ) |
| 7 |
5 6
|
syl |
|- ( A e. ( card ` B ) -> ( card ` B ) ~~ B ) |
| 8 |
|
domentr |
|- ( ( A ~<_ ( card ` B ) /\ ( card ` B ) ~~ B ) -> A ~<_ B ) |
| 9 |
4 7 8
|
syl2anc |
|- ( A e. ( card ` B ) -> A ~<_ B ) |
| 10 |
|
cardne |
|- ( A e. ( card ` B ) -> -. A ~~ B ) |
| 11 |
|
brsdom |
|- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
| 12 |
9 10 11
|
sylanbrc |
|- ( A e. ( card ` B ) -> A ~< B ) |