Metamath Proof Explorer


Theorem cardsn

Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013)

Ref Expression
Assertion cardsn
|- ( A e. V -> ( card ` { A } ) = 1o )

Proof

Step Hyp Ref Expression
1 eqid
 |-  { A } = { A }
2 sneq
 |-  ( x = A -> { x } = { A } )
3 2 eqeq2d
 |-  ( x = A -> ( { A } = { x } <-> { A } = { A } ) )
4 3 spcegv
 |-  ( A e. V -> ( { A } = { A } -> E. x { A } = { x } ) )
5 1 4 mpi
 |-  ( A e. V -> E. x { A } = { x } )
6 card1
 |-  ( ( card ` { A } ) = 1o <-> E. x { A } = { x } )
7 5 6 sylibr
 |-  ( A e. V -> ( card ` { A } ) = 1o )