Metamath Proof Explorer


Theorem cardsucnn

Description: The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf . (Contributed by NM, 7-Nov-2008)

Ref Expression
Assertion cardsucnn
|- ( A e. _om -> ( card ` suc A ) = suc ( card ` A ) )

Proof

Step Hyp Ref Expression
1 peano2
 |-  ( A e. _om -> suc A e. _om )
2 cardnn
 |-  ( suc A e. _om -> ( card ` suc A ) = suc A )
3 1 2 syl
 |-  ( A e. _om -> ( card ` suc A ) = suc A )
4 cardnn
 |-  ( A e. _om -> ( card ` A ) = A )
5 suceq
 |-  ( ( card ` A ) = A -> suc ( card ` A ) = suc A )
6 4 5 syl
 |-  ( A e. _om -> suc ( card ` A ) = suc A )
7 3 6 eqtr4d
 |-  ( A e. _om -> ( card ` suc A ) = suc ( card ` A ) )